

External Specifications for

Open Data Distribution Platform Systems

Version 2.0

- i -

Table of Contents

1. Introduction .. 1

1.1. Background and purpose.. 1

1.2. Scope of specification .. 2

1.3. Expressions concerning requirements, prohibitions, and permissions 3

1.4. Specification policies ... 3

1.4.1. Compatibility and interoperability with existing standards 4

1.4.2. Identification targets and methods .. 5

1.4.3. Selective provision and expansion of functions.. 6

1.5 Terminology definitions... 6

1.6 References .. 7

1.7. Revision history ... 11

2. ODDP data standards ... 12

2.1. Data model ... 12

2.2. Data representation formats ... 12

2.3. Vocabulary ... 12

3. Overview of ODDP API .. 14

3.1. rotocol .. 15

3.2. unctions corresponding to HTTP methods .. 15

3.3. TTP status codes .. 15

3.4. Request and response formats .. 16

3.4.1. Format of message body ... 16

3.4.2. Request success or failure and message body content .. 17

3.4.3. Rules on response paging.. 18

3.4.4. Rules on URI notation .. 18

3.5. Data formats ... 19

3.6. RDF expressions requesting automatic ucode issuing ... 19

3.7. Streams API ... 20

3.8. Other common provisions .. 20

4. Details of ODDP API... 21

4.1. SPARQL-based commands ... 21

4.1.1. Issuing queries based on SPARQL 1.1: GET method .. 21

4.1.2. Issuing queries based on SPARQL 1.1: POST method 24

4.1.3. Viewing RDF graphs .. 26

4.1.4. Adding RDF graphs .. 28

4.1.5. Updating RDF graphs ... 30

4.1.6. Deleting RDF graphs .. 31

4.2. Traceability and real-time data management commands ... 32

4.2.1. Searching for events .. 33

4.2.2. Registering new events ... 36

4.2.3. Viewing events.. 38

4.2.4. Viewing events: Specifying properties ... 40

4.2.5. Updating events .. 41

4.2.6. Updating events: Specifying properties .. 43

4.2.7. Deleting events.. 45

4.2.8. Deleting events: Specifying properties ... 46

4.2.9. Performing traces .. 47

4.3. Geographic data management commands ... 49

4.3.1. Searching for place information.. 51

- ii -

4.3.2. Registering new place information ... 54

4.3.3. Viewing place information ... 56

4.3.4. Viewing place information: Specifying properties ... 58

4.3.5. Updating place information .. 59

4.3.6. Updating place information: Specifying properties .. 61

4.3.7. Deleting place information ... 63

4.3.8. Deleting attributes of place information ... 64

4.3.9. Moving inclusion relationships of place information ... 65

4.4. Security management commands .. 66

4.4.1. Searching for roles .. 68

4.4.2. Registering new roles .. 71

4.4.3. Viewing roles .. 74

4.4.4. Viewing roles: Specifying properties.. 75

4.4.5. Updating roles ... 77

4.4.6. Updating roles: Specifying properties .. 79

4.4.7. Deleting roles .. 81

4.4.8. Deleting attributes of roles .. 82

4.4.9. Searching data sets .. 83

4.5. Notification management commands .. 85

4.5.1. Searching for notifications .. 87

4.5.2. Creating new notifications .. 89

4.5.3. Viewing notification information ... 92

4.5.4. Updating notification information .. 94

4.5.5. Deleting notifications .. 95

4.5.6. Starting or resuming notifications ... 96

4.5.7. Stopping notifications ... 97

4.6. Vocabulary management commands ... 99

4.6.1. Searching for terms ... 99

4.6.2. Creating new terms ... 102

4.6.3. Viewing terms ... 105

4.6.4. Viewing term information: Specifying properties .. 108

4.6.5. Updating term information ... 109

4.6.6. Updating term information: Specifying properties ... 111

4.6.7. Deleting terms ... 113

4.6.8. Searching for synonyms .. 114

4.6.9. Updating synonym information .. 115

4.6.10. Searching for parent terms .. 116

4.6.11. Updating parent term information ... 118

4.6.12. Searching for child terms .. 119

4.7. Triple management commands .. 121

4.7.1. Searching for public data .. 121

4.7.2. Creating new public data .. 123

4.7.3. Viewing public data .. 125

4.7.4. Viewing public data: Specifying properties .. 126

4.7.5. Updating public data ... 128

4.7.6. Updating public data: Specifying properties... 130

4.7.7. Deleting public data .. 131

4.7.8. Deleting attributes of public data .. 132

4.8. Identification resolution commands ... 133

4.8.1. Simplified ucode resolution .. 134

- iii -

4.8.2. ucode resolution: Obtaining referent of public data from ucode 136

4.8.3. Creating new ucode resolution information .. 138

4.8.4. Updating ucode resolution information .. 140

4.8.5. Deleting ucode resolution information ... 141

Appendix A. Summary of RDF ... 143

A.1. RDF model and RDF graphs .. 143

A.2. RDF syntax ... 143

A.3. RDF graph searching with SPARQL ... 144

Appendix B. Summary of ucode .. 146

B.1. Definition of ucode ... 146

B.2. Features of ucode .. 147

B.3. Relationship between ucode and RDF ... 148

Appendix C. Vocabulary lists .. 149

C.1. Vocabulary for basic RDF structure ... 149

C.2. RDF schema ... 152

C.3. OWL ... 155

C.4. Dublin Core elements ... 163

C.5. DCMI vocabulary ... 166

C.6. Dublin Core types ... 176

C.7. FoaF .. 178

C.8. GeoSPARQL vocabulary ... 186

C.9. Basic Geo vocabulary ... 191

C.10. Data Catalog (DCAT) vocabulary .. 194

C.11. RDF Data Cube vocabulary ... 198

C.12. Simple Knowledge Organization System (SKOS) ... 203

C.13. Vocabulary for basic classes and physical quantities of subject matter 208

C.14. Access control vocabulary .. 215

C.15. Geospatial vocabulary .. 218

C.16. Place accessibility vocabulary .. 233

C.17. Unit system vocabulary .. 238

C.18. Event vocabulary .. 242

C.19. Geographic information service vocabulary .. 246

C.20. Vocabulary for products and goods .. 253

C.21. Vocabulary for transactions .. 258

C.22. Vocabulary for basic attributes of pharmaceutical products 262

- iv -

List of Figures

Fig. 1.1. Overview of the open data distribution platform (ODDP) ... 1

Fig. 1.2. Example configuration of open data distribution platform 3

Fig. 3.1. Configuration of open data distribution platform systems .. 15

Fig. 4.1. Access control using security management commands .. 67

Fig. 4.2. Example of access control statements ... 68

Fig. A.1. Example of RDF graph ... 143

Fig. A.2. Example of RDF graph storage ... 145

Fig. B.1. Structure of ucode .. 147

Fig. B.2. Example of RDF graph containing ucode .. 148

- v -

List of Tables

Table 1.5.1. Terminology definitions ... 7

Table 1.7.1. Revision history ... 11

Table 3.2.1. elationship between functions and HTTP methods .. 15

Table 3.3.1. tatus codes of ODDP API ... 16

Table 3.4.1. Header values indicating RDF graph expression format 17

Table 3.4.2. Error message parameters ... 18

Table 3.4.3. Parameters of error messages for paging .. 18

Table 3.5.1. Data formats defined in these specifications .. 19

Table 4.1.1. List of SPARQL-based commands .. 21

Table 4.1.2. Parameters for issuing queries based on SPARQL 1.1 (GET method) 22

Table 4.1.3. Accept header values specifying response format for SELECT operations 22

Table 4.1.4. Accept header values specifying RDF graph format of response 22

Table 4.1.5. Accept header values specifying binary value format of response 22

Table 4.1.6. Status codes when issuing queries based on SPARQL 1.1 (GET method) 23

Table 4.1.7. Parameters for issuing queries based on SPARQL 1.1 (POST method) 25

Table 4.1.8. Status codes when issuing queries based on SPARQL 1.1 (POST method) 25

Table 4.1.9. RDF graph viewing parameters ... 27

Table 4.1.10. Status codes when viewing RDF graphs.. 27

Table 4.1.11. RDF graph viewing parameters ... 29

Table 4.1.12. Status codes when adding RDF graphs.. 29

Table 4.1.13. RDF graph viewing parameters ... 30

Table 4.1.14. Status codes when updating RDF graphs .. 30

Table 4.1.15. RDF graph deletion parameters ... 32

Table 4.1.16. Status codes when deleting RDF graphs.. 32

Table 4.2.1. List of traceability and real-time data management commands 33

Table 4.2.2. Event search parameters .. 33

Table 4.2.3. Event search parameters .. 34

Table 4.2.4. Status codes when searching for events ... 35

Table 4.2.5. Status codes when registering new events ... 36

Table 4.2.6. Response format for new event registration .. 36

Table 4.2.7. Event viewing parameters .. 38

Table 4.2.8. Status codes when viewing events ... 39

Table 4.2.9. Parameters for event viewing when specifying properties 40

Table 4.2.10. Status codes when viewing events and specifying properties 40

Table 4.2.11. Status codes when updating events .. 42

Table 4.2.12. Status codes when updating events and specifying properties 44

Table 4.2.13. Status codes when deleting events ... 45

Table 4.2.14. Status codes when deleting events and specifying properties 46

Table 4.2.15. Parameters for performing a trace ... 47

Table 4.2.16. Status codes when performing a trace ... 48

Table 4.3.1. Geometric data representation format.. 50

Table 4.3.2. List of geographic data management commands ... 50

Table 4.3.3. Place information search parameters .. 51

Table 4.3.4. Place information search parameters ... 52

Table 4.3.5. Place information search parameters ... 52

Table 4.3.6. Status codes when searching for place information... 53

Table 4.3.7. Status codes when registering new place information .. 55

Table 4.3.8. Response format for new place information registration 55

- vi -

Table 4.3.9. Status codes when viewing place information .. 57

Table 4.3.10. Status codes when viewing place information and specifying properties 58

Table 4.3.11. Status codes when updating place information.. 60

Table 4.3.12. Status codes when updating place information and specifying properties 62

Table 4.3.13. Status codes when deleting place information .. 63

Table 4.3.14. Status codes when deleting attributes of place information 64

Table 4.3.15. Status codes when moving inclusion relationships of place information 66

Table 4.4.1. List of security management commands ... 68

Table 4.4.2. Role search parameters ... 69

Table 4.4.3. Status codes when searching for roles .. 70

Table 4.4.4. Status codes when registering new roles ... 72

Table 4.4.5. Response format for new role registration ... 72

Table 4.4.6. Status codes when viewing roles ... 74

Table 4.4.7. Status codes when viewing roles and specifying properties 76

Table 4.4.8. Status codes when updating roles .. 78

Table 4.4.9. Status codes when updating roles and specifying properties 80

Table 4.4.10. Status codes when deleting roles .. 82

Table 4.4.11. Status codes when deleting attributes of roles ... 83

Table 4.4.12. Data set search parameters ... 84

Table 4.4.13. Status codes when searching data sets ... 84

Table 4.5.1. Properties associated with notifications and their values (objects) 86

Table 4.5.2. List of notification conditions ... 86

Table 4.5.3. List of notification management commands ... 86

Table 4.5.4. Notification search parameters ... 87

Table 4.5.5. Status codes when searching for notifications .. 87

Table 4.5.6. Status codes when creating new notifications .. 90

Table 4.5.7. Response format for creation of new notifications ... 90

Table 4.5.8. Status codes when viewing notification information ... 92

Table 4.5.9. Response format for viewing notification information 92

Table 4.5.10. Status codes when updating notification information...................................... 94

Table 4.5.11. Status codes when deleting notifications ... 96

Table 4.5.12. Status codes when starting or resuming notifications 97

Table 4.5.13. Status codes when stopping notifications .. 98

Table 4.6.1. List of vocabulary management commands .. 99

Table 4.6.2. Term search parameters ... 99

Table 4.6.3. Status codes when searching for terms .. 100

Table 4.6.4. Status codes when creating new terms .. 102

Table 4.6.5. Response format for creation of new terms .. 102

Table 4.6.6. Status codes when viewing terms ... 105

Table 4.6.7. Status codes when viewing term information and specifying properties 108

Table 4.6.8. Status codes when updating term information ... 110

Table 4.6.9. Status codes when updating term information and specifying properties 112

Table 4.6.10. Status codes when deleting terms ... 113

Table 4.6.11. Status codes when searching for synonyms .. 114

Table 4.6.12. Response format for synonym searches .. 114

Table 4.6.13. Parameters for updating synonym information ... 115

Table 4.6.14. Status codes when updating synonym information 116

Table 4.6.15. Status codes when searching for parent terms ... 117

Table 4.6.16. Response format for parent term searches ... 117

Table 4.6.17. Status codes when updating parent term information 119

- vii -

Table 4.6.18. Status codes when searching for child terms .. 120

Table 4.6.19. Response format for child term searches .. 120

Table 4.7.1. List of triple management commands ... 121

Table 4.7.2. Public data search parameters ... 121

Table 4.7.3. Status codes when searching for public data .. 122

Table 4.7.4. Status codes when creating new public data ... 124

Table 4.7.5. Response format for new public data creation .. 124

Table 4.7.6. Parameters for viewing public data .. 125

Table 4.7.7. Status codes when viewing public data .. 125

Table 4.7.8. Parameters for viewing public data and specifying properties 127

Table 4.7.9. Status codes when viewing public data and specifying properties 127

Table 4.7.10. Status codes when updating public data .. 129

Table 4.7.11. Status codes when updating public data and specifying properties 130

Table 4.7.12. Status codes when deleting public data ... 132

Table 4.7.13. Status codes when deleting attributes of public data 133

Table 4.8.1. List of identification resolution commands ... 134

Table 4.8.2. Simplified ucode resolution parameters ... 134

Table 4.8.3. Ucode resolution search parameters ... 135

Table 4.8.4. Status codes in simplified ucode resolution .. 135

Table 4.8.5. Response parameters in simplified ucode resolution 136

Table 4.8.6. Parameters for ucode resolution (obtaining referent of public data from

ucode) ... 137

Table 4.8.7. Status codes in ucode resolution (obtaining referent of public data from

ucode) ... 137

Table 4.8.8. Response parameters in ucode resolution (obtaining referent of public

data from ucode) ... 137

Table 4.8.9. Parameters for creating new ucode resolution information 139

Table 4.8.10. Status codes when creating new ucode resolution information 139

Table 4.8.11. Response format for creation of ucode resolution information 139

Table 4.8.12. Parameters for updating ucode resolution information................................... 140

Table 4.8.13. Status codes when updating ucode resolution information 141

Table 4.8.14. Status codes when deleting ucode resolution information.............................. 142

Table C.1.1. List of classes and instances of vocabulary for basic RDF structure 150

Table C.1.2. List of properties of vocabulary on basic RDF structure 151

Table C.2.1. List of classes and instances of RDF schema... 153

Table C.2.2. List of properties of RDF schema .. 154

Table C.3.1. List of classes and instances of OWL .. 156

Table C.3.2. List of properties of OWL .. 158

Table C.4.1. List of properties of Dublin Core elements .. 164

Table C.5.1. List of classes and instances of DCMI vocabulary .. 167

Table C.5.2. List of properties of DCMI vocabulary .. 170

Table C.6.1. List of classes and instances of Dublin Core types .. 177

Table C.7.1. List of classes and instances of FoaF ... 179

Table C.7.2. List of properties of FoaF ... 180

Table C.8.1. GeoSPARQL namespaces .. 186

Table C.8.2. List of classes and instances of GeoSPARQL vocabulary............................... 187

Table C.8.3. List of properties of GeoSPARQL vocabulary .. 189

Table C.9.1. List of classes and instances of Basic Geo vocabulary 192

Table C.9.2. List of properties of Basic Geo vocabulary .. 193

Table C.10.1. List of classes and instances of Data Catalog Vocabulary (DCAT) 195

- viii -

Table C.10.2. List of properties of Data Catalog Vocabulary (DCAT) 196

Table C.11.1. List of classes and instances of RDF Data Cube vocabulary 199

Table C.11.2. List of properties of RDF Data Cube vocabulary .. 201

Table C.12.1. List of classes and instances of SKOS (Simple Knowledge Organization

System) ... 204

Table C.12.2. List of properties of SKOS (Simple Knowledge Organization System)........ 205

Table C.13.1. List of classes and instances of vocabulary for basic classes and physical

quantities of subject matter ... 209

Table C.13.2. List of properties of vocabulary for basic classes and physical quantities

of subject matter ... 210

Table C.14.1. List of classes and instances of access control vocabulary 216

Table C.14.2. List of properties of access control vocabulary.. 217

Table C.15.1. List of classes and instances of geospatial vocabulary 219

Table C.15.2. List of properties of geospatial vocabulary .. 230

Table C.16.1. List of classes and instances of place accessibility vocabulary 234

Table C.16.2. List of properties of place accessibility vocabulary 237

Table C.17.1. List of classes and instances of unit system vocabulary 239

Table C.17.2. List of properties of unit system vocabulary .. 241

Table C.18.1. List of classes and instances of event vocabulary .. 243

Table C.18.2. List of properties of event vocabulary ... 244

Table C.19.1. List of classes and instances of geographic information service vocabulary . 247

Table C.19.2. List of properties of geographic information service vocabulary 248

Table C.20.1. List of classes and instances of vocabulary for products and goods 254

Table C.20.2. List of properties of vocabulary for products and goods 255

Table C.21.1. List of classes and instances of vocabulary for transactions 259

Table C.21.2. List of properties of vocabulary for transactions ... 260

Table C.22.1. List of classes and instances of vocabulary for basic attributes of

pharmaceutical products ... 263

Table C.22.2. List of properties of vocabulary for basic attributes of pharmaceutical

products .. 270

- 1 -

1. Introduction

1.1. Background and purpose

 With the advances of recent years in information and communication technology (ICT)

and growth of the information infrastructure, ubiquitous networking is becoming a

reality wherein anyone will be able to obtain support using ICT, anytime and anywhere.

In addition to existing modes of communication that allow people to exchange

information with each other through audio, text, and multimedia, data obtained by

sensors and devices that are used in a variety of settings in society can now be

connected to information and communications networks due to advances in areas such

as the Internet of Things (IoT) and machine-to-machine technologies (M2M), making it

possible to gather vast amounts of data that can be used to help society to operate with

greater efficiency and convenience. We are coming closer to a future where everything

and every place in society will be connected by information and communications

networks, exchanging enormous amounts of data. There is a growing move toward

public availability and distribution for data that in the past has been accessible only

within specific companies, groups, industries, or government organizations. The

purpose of these specifications is to define the methodology as a means of facilitating

the construction of applications to register and use the various types of public data as

well as servers to aggregate the information. An open data distribution platform (ODDP)

(Fig. 1.1) is an environment of versatile technologies and operating rules for the

purpose of promoting distribution and collaboration in relation to the construction of

applications that register and use public data. This document specifies external

technical standards concerning the data model and application programming interface

(API) for constructing open data distribution platform systems.

Fig. 1.1. Overview of the open data distribution platform (ODDP)

- 2 -

1.2. Scope of specification

 The two areas below comprise the scope specified by this document.

1. Data standards (ODDP data standards)

 The ODDP data standards are technical standards concerning the data model, data

representation formats, and vocabularies for construction of an open data

distribution platform that supports distribution and collaboration with regard to

public data across multiple industries.

 Detailed information concerning these standards is presented in section 2 (ODDP

data standards).

2. API standards (ODDP API standards)

 The ODDP API standards are technical standards concerning methods for the

interchange of public data across multiple industries, including methods for

operations such as retrieval, acquisition, and updating of data for open data

distribution platform systems.

 Detailed information concerning these standards is presented in section 3 (Summary

of ODDP API) and section 4 (Details of ODDP API).

 These specifications do not cover other matters than ODDP data standards and ODDP

API standards. For example, these specifications do not define standards concerning the

construction of databases or servers. Therefore, as shown in Fig. 1.2 (b), a system could

be constructed by overlaying the ODDP API on an interface for an existing data

processing system.

- 3 -

(a) Data sources as well as applications are

based on the ODDP API.

(b) The ODDP API is used with an existing

data management system.

Fig. 1.2. Example configuration of open data distribution platform

1.3. Expressions concerning requirements, prohibitions, and permissions

 Requirements, prohibitions, and permissions are expressed as follows in this document.

Requirements: "must," "should"

Prohibitions: "must not," "cannot"

Permissions: "may," "can"

1.4. Specification policies

 This document specifies the following policies for ODDP data standards and ODDP

API standards.

1. Compatibility with existing standards

 Many different standards for the exchange of data among applications and servers

are already being used widely. These specifications were developed with

consideration for maximal utilization of and interoperability with existing

standards.

2. Identification targets and methods

 These specifications clarify the data and subject matter for identification and

indicate methods for their identification. Identification methods are based on

maximal utilization of existing identifiers, as in the preceding paragraph.

- 4 -

3. Selective use and expansion of specifications

 These specifications are designed to facilitate the construction of applications and

servers by indicating methods for the construction of applications to register and

use public data, as well as servers to aggregate information. Therefore,

consideration is given to flexible application of these specifications when

constructing applications and servers. In other words, selective use and expansion

of these specifications is allowed. Important points for consideration concerning

the selective use and expansion of these specifications will be discussed later.

 Policies 1–3 are discussed below.

1.4.1. Compatibility and interoperability with existing standards

 Several standards on data exchange between applications and servers have already

been established, including RDF [37], HTTP [47], XML [52], JSON [23], Turtle [46],

REST, Linked Data Platform [49], OAuth 2.0 [25], Dublin Core [22], DoI (Digital

Object Identifiers) [34], UUID (Universally Unique Identifier) [32], ISBN

(International Standard Book Number) [33], and ucode (Ubiquitous Code) [16].

 These specifications give consideration to compatibility and interoperability with the

existing standards listed above. The details are indicated below.

 The existing standards referenced herein are as of the time of publication of these

specifications. Future revisions in existing standards after the time of publication of

these specifications will be addressed according to the maintenance schedule of these

specifications. Therefore, there will be a time lag until future revisions in existing

standards can be reflected.

1.4.1.1. Data model and representation formats

 The data handled by these specifications is based on the RDF data model [37]. RDF

is a widely used data model for descriptions of data and metadata.

 The applicable representation formats are widely used formats based on the RDF

model, such as RDF/XML [1], N-Triples [29], Notation3 [4], Turtle [46], and JSON-

LD [51].

1.4.1.2. Communication and message formats and authentication methods

 The communication and message formats and authentication methods are based on

existing standards such as HTTP [47], XML [52], JSON [23], and Auth 2.0 [25] .

1.4.1.3. Relation to existing APIs

 The following describes the relationship between existing APIs and the ODP API.

- 5 -

1. SPARQL [18, 28, 30]

 The SPARQL-based commands (section 4.1) included in the ODDP API are

based on SPARQL 1.1.

2. Linked Data Platform [49]

 Within the ODDP API, the Linked Data Platform is used for REST style APIs

that are input-output interfaces for commands to input or output data based on

the RDF model. Commands that are not specified by the Linked Data Platform

are specified independently by the ODDP API. For example, under geographical

data management commands, a command to search for location information

(section 4.3.1) is not specified by the Linked Data Platform, so it is provided

independently by these specifications. Meanwhile, since the response to this

command is data based on the RDF model, the rules of the Linked Data

Platform are followed with regard to the response format and the method for

specifying the data representation format.

1.4.1.4. Relevant vocabularies

 The vocabularies for description of data based on the RDF model are widely used,

including Dublin Core [22], DCMI [21], FoaF [8], and DCAT [39]. The

vocabularies based on the ucode system include basic vocabulary [13] and spatial

metadata vocabulary [12], and these can also be used as vocabularies based on

ODDP data standards.

 Please refer to Appendix C for a list of vocabularies for reference when describing

data under these specifications.

1.4.2. Identification targets and methods

 These specifications apply to the following data.

 Files containing data such as documents, tables, images, video, and audio

 Data created by interpreting the above and converting it into RDF format

 Data measured by sensors

 Data supplied by users of social networking services, etc.

 Data based on other applications

 Metadata concerning the data sets above

 The data handled by these specifications should be uniquely identified to prevent

confusion with other data. For example, public data subject to these specifications can

indicate products in the distribution process in traceability applications, locations

identified with geospatial applications, and organizations that created the files, so

these also need to be identified. Therefore, unique identification is needed for things,

organizations, places, etc. that are indicated by public data.

 Also, because these specifications follow the RDF data model, identifiers for data

handled by these specifications should be expressed in the URI (Uniform Resource

Identifier) format, which the specified method for representation of RDF resources.

- 6 -

 Concerning identifiers for data and its associated things, organizations, places, etc. in

fields where identifiers meeting the above conditions already exist, those existing

identifiers are used in accordance with the policies stated in the preceding section. For

example, these include DoI (Digital Object Identifiers) [34], UUID (Universally

Unique Identifier) [32], ISBN (International Standard Book Number) [33], and ucode

[16]. Meanwhile, ucode, a technical standard based on ITU-T H.642.1 [35], may also

be used in cases where there is no uniform method for identifying data or its

associated things, organizations, places, etc., or it is not possible to represent their

identifiers in the URI format.

1.4.3. Selective provision and expansion of functions

 These specifications indicate an API consisting of eight functions, as well as the

elements needed for vocabulary definitions. Examples of vocabulary definitions are

given in an appendix. These are specified as matters needed for typical applications

that register and use public data.

 Servers that comply with these specifications do not necessarily have to provide all of

the functions stated in this document. The functions needed for the envisioned

services may be selected. However, at least one of the functions stated in this

document should be provided.

 It is also possible to independently expand or limit the functions to ensure usability

and improve performance, depending on the services. However, we recommend that

the input-output parameters of expanded API specifications should be as defined in

these specifications. Server providers who limit or add to the supplied functions

should provide specifications including the following information to application

developers.

 The referenced version of this document and the source where it was obtained.

 A list of the functions under these specifications which are provided by the server.

 The functions subject to limitations.

 For example, "___ function is not provided," "XML responses are not supported,"

or "___ parameter cannot be used."

 The expanded functions.

 Concerning expanded API functions, we recommend stating the following items of

information, similar to the descriptions of API specifications in this document.

 Function overview, method, URL path, constrained conditions, parameters,

required HTTP headers, status codes, response, and API usage examples

1.5 Terminology definitions

 Table 1.5.1 shows definitions of terms used in this document. Two of these terms, RDF

and ucode, are also explained in appendices at the end of this document.

- 7 -

Table 1.5.1. Terminology definitions

Word or phrase Meaning

Public data Data made available for use by many persons, companies, and organizations. In addition to
data in documentary or tabular form and data contained in databases, public data includes
real-time data obtained from network-connected devices such as sensors, as well as data
supplied by users of social networking services (SNS) and the like. Public data also includes
data where uses such as access, editing, and diversion are only permitted under certain
conditions.

Open data Public data that is supplied in a machine-readable data format under rules of use (licensing)
that allow secondary uses, including commercial uses.

Open data
distribution
platform

An environment of versatile technologies and operating rules, etc. that enables collaboration
and sharing with regard to information, knowledge, and services, as a common basis for the
distribution and utilization of information without being limited to a certain entity, field, or
sector.

Metadata Highly abstract supplementary data that accompanies an item of data. For example,
metadata may include the time and place where some data was created, its author and title,
and comments.

Open data
distribution
platform system

An actual implementation of an open data distribution platform, realized by a software system
built on a cloud server by way of a wide-area digital network such as the Internet.

User program A program that obtains and registers public data and is connected to an open data distribution
platform system.

ucode [16] A number identifying an object, place, or concept in units of 128-bit values.

ucode tag Media used to store ucodes.

RDF [37] Resource Description Framework, a framework for the description of a "web resource" (item
that is referred to). The RDF data model describes a resource in terms of three elements: a
subject, a predicate, and an object.

URI [3] Uniform Resource Identifier, an identifier of a web resource. The subject and predicate of an
RDF statement are URIs. The object is either a URI or a string of characters.

Vocabulary A set of semantic definitions concerning the attributes and types to be understood in common
within a certain field in order to describe objects and data belonging to that field. A vocabulary
serves as a dictionary for use in describing public data.

Term A semantic definition concerning a specific attribute or type. Terms are the component
elements of a vocabulary.

REST Representational State Transfer. Here, this refers to a query method that uses the HTTP
commands GET, POST, PUT, and DELETE to perform the operations of acquiring, creating,
updating, and deleting data.

ucode issuing Generating a ucode value that has never been used before.

1.6 References

(1) Dave Beckett. RDF/XML Syntax Specification. W3C Recommendation, 2004.

http://www.w3.org/TR/rdf-syntax-grammar/.

(2) Dave Beckett and Jeen Broekstra. SPARQL Query Results XML Format. W3C

Recommendation, 2008. http://www.w3.org/TR/rdf-sparql-XMLres/.

(3) T. Berners-Lee, R. Fielding, and L.Masinter. Uniform Resource Identifier (URI):

General Syntax, 2005. RFC 3986, http://tools.ietf.org/html/rfc3986.

(4) Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF syntax.

W3C Team Submission, 2011. http://www.w3.org/TeamSubmission/n3/.

- 8 -

(5) Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau,

and John Cowan. Extensible Markup Language (XML) 1.1. W3C Recommendation.

http://www.w3.org/TR/xml11/.

(6) Dan Brickley. Basic GEO (WGS84 lat/long) Vocabulary.

http://www.w3.org/2003/01/geo/.

(7) Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF

Schema. W3C Recommendation, 2004. http://www.w3.org/TR/rdf-schema/.

(8) Dan Brickley and Libby Miller. FOAF Vocabulary Specification.

http://smlns.com/foaf/spec/.

(9) Howard Bulter, Martin Daly, Allan Doyle, Sean Gillies, Tim Schaub, and

Christopher Schmidt. The GeoJSON Format Specification, 2008.

http://www.geojson.org/geojson-spec.html.

(10) Ubiquitous ID Center. UCR – Spatial Accessibility, 2006. UID-00033,

http://www.uidcenter.org/ja/spec#UID-00033.

(11) Ubiquitous ID Center. UCR – Spatial Network, 2006. UID-00032,

http://www.uidcenter.org/ja/spec#UID-00032.

(12) Ubiquitous ID Center. UCR – Spatial Metadata, 2006. UID-00031,

http://www.uidcenter.org/ja/spec#UID-00031.

(13) Ubiquitous ID Center. UCR – Basic Vocabulary, 2006. UID-00030,

http://www.uidcenter.org/ja/spec#UID-00030.

(14) Ubiquitous ID Center. ucode ucode Resolution Gateway, 2008. UID-00007,

http://www.uidcenter.org/ja/spec#UID-00007.

(15) Ubiquitous ID Center. Simplified ucode Resolution Protocol, 2008. UID-00005,

http://www.uidcenter.org/ja/spec#UID-00005.

(16) Ubiquitous ID Center. ucode: Ubiquitous Code: ucode, 2009. UID-00010,

http://www.uidcenter.org/ja/spec#UID-00010.

(17) Ubiquitous ID Center. ucR format: ucode ucR format: ucode Relation Format,

2012. UID-00026, http://www.uidcenter.org/ja/spec#UID-00026.

(18) Kendall Grant Clark, Lee Feigenbaum, , and Elias Torres. SPARQL Protocol for

RDF. W3C Working Draft, 2008. http://www.w3.org/TR/rdf-sparql-protocol/.

(19) Open Geospatial Consortium. Consortium. OpenGIS RⓇSimple Features

Specification For SQL Revision 1.1, 1999. OGC 99-049,

http://www.opengeospatial.org/standards/sfs.

- 9 -

(20) Dublin Core. DCMI Metadata Terms.

http://dublincore.org/documents/2012/06/14/dcmi-terms/.

(21) Dublin Core. DCMI Metadata Terms.

http://dublincore.org/documents/2012/06/14/dcmi-terms.

(22) Dublin Core. Dublin Core Metadata element Set, Version 1.1. http://dublincore.

org/documents/dces/.

(23) D. Crockford. The application/json Media Type for JavaScript Object Notation

(JSON), 2006. RFC 4267, http://tools.ietf.org/html/rfc4267.

(24) Richard Cyganiak and Dave Reynolds. The RDF Data Cube Vocabulary. W3C

Recommendation, 2014. http://www.w3.org/TR/vocab-data-cube/.

(25) Ed D. Hardt. The OAuth 2.0 Authorization Framework, 2012. RFC 6749,

http://tools.ietf.org/html/rfc6749.

(26) Ian Davis and Thomas Steiner. RDF 1.1 JSON Alternate Serialization (RDF/JSON).

W3C Working Group Note, 2013. http://www.w3.org/TR/rdf-json/.

(27) Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and Elias Torres.

SPARQL 1.1 Protocol. W3C Working Draft, 2012.

http://www.w3.org/TR/sparql11-protocol.

(28) Paul Gearon, Alexandre Passant, and Axel Polleres. SPARQL 1.1 Update. W3C

Working Draft, 2012. http://www.w3.org/TR/sparql11-update.

(29) Jan Grant and Dave Beckett. RDF Test Cases. W3C Recommendation, 2004.

http://www.w3.org/TR/rdf-testcases/#ntriples.

(30) Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C Working

Draft, 2012. http://www.w3.org/TR/sparql11-query.

(31) John R. Herring. OpenGIS ⓇImplementation Standard for Geographic

information - Simple feature access. Part 1: Common architecture, 2011. OGC 06-

103r4, http://www.opengeospatial.org/standards/sfa.

(32) International Organization for Standardization. Open Systems Interconnection -

Remote Procedure Call (RPC), 1996. ISO/IEC 11578.

(33) International Organization for Standardization. International standard book note,

2005. ISO 2108.

(34) International Organization for Standardization. Digital object identifier system,

2012. ISO 26324.

- 10 -

(35) International Telocommunication Union. Multimedia information access triggered

by tag-based identification - Identification scheme, 2012. Recommendation

H.642.1, http://www.itu.int/rec/T-REC-H.642.1/en.

(36) Chiaki Ishikawa. Namespace for ucode, 2012. RFC 6558,

http://tools.ietf.org/html/rfc6588.

(37) Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):

Concepts and Abstract Syntax. W3C Recommendation, 2004.

http://www.w3.org/TR/rdf-concepts/.

(38) P. Leach, M. Mealling, and R. Salz. A Universally Unique Identifier (UUID) URN

Namespace, 2005. RFC 4412, http://tools.ietf.org/html/rfc4122.

(39) Fadi Maali, John Erickson, and Phil Archer. Data Catalog Vocabulary (DCAT).

W3C Recommendation, 2014. http://www.w3.org/TR/vocab-dcat/.

(40) Alistair Miles and Sean Bechhofer. SKOS Simple Knowledge Organization System

Reference. W3C Recommendation, 2009. http://www.w3.org/TR/skos-reference/.

(41) Feras Moussa. Streams API. W3C Editor's Draft, 2012.

http://dvcs.w3.org/hg/streams-api/raw-file/tip/Overview.htm.

(42) M. Nottingham. Web Linking, 2010. RFC 5988, http://tools.ietf.org/html/rfc5988.

(43) Chimezie Ogbuji. SPARQL 1.1 Graph Store HTTP Protocol. W3C Working Draft,

2012. http://www.w3.org/TR/sparql11-http-rdf-update/.

(44) Matthew Perry and John Herring. OGC GeoSPARQL - A Geographic Query

Language for RDF Data. Open Geospatial Consortium, 2012. OGC 11-052r4,

http://www.opengeospatial.org/standards/geosparql.

(45) Clemens Portele. ORC ⓇGeography Markup Lamguage (GML), 2012. OGC 10-

129r1, ISO 19136, http://www.opengeospatial.org/standards/gml.

(46) Eric Prud'hommeaux, Gavin Carothers, and Lex Machina. RDF 1.1 Turtle. W3C

Recommendation, 2014. http://www.w3.org/TR/turtle/.

(47) R.Fielding, T. Berners-Lee, and at. el. Hypertext Transfer Protocol - HTTP/1.1,

1999. RFC 2616, http://tools.ietf.org/html/rfc2616.

(48) Andy Seaborne. SPARQL 1.1 Query Results JSON Format. W3C Working Draft,

2011. http://www.w3.org/TR/sparql11-results-json/.

(49) Steve Speicher, John Arwe, and Ashok Malhotra. Linked Data Platform 1.0. W3C

Working Draft, 2014. http://www.w3.org/TR/ldp/.

(50) Steve Speicher, John Arwe, and Ashok Malhotra. Linked Data Platform Paging 1.0.

W3C Editor's Draft, 2014. http://www.w3.org/2012/ldp/hg/ldp-paging.html.

- 11 -

(51) Manu Sporny, Gregg Kellogg, and Markus Lanthaler. JSON-LD 1.0: A JSON-

based Serialization for Linked Data. W3C Recommendation, 2014.

http://www.w3.org/TR/json-ld/.

(52) W3C. XML Schema. http://www.w3.org/XML/Schema.

(53) Ministry of Health, Labor and Welfare. The Japanese Pharmacopoeia, Sixteenth

Edition, 2011. http://jpdb.nihs.go.jp/jp16/YAKKYOKUHOU16.pdf.

1.7. Revision history

Table 1.7.1. Revision history

Revision date Version Changes

3/25/2013 1.0  Created initial version.

9/10/2013 1.1  Revised introduction to clarify the purpose and scope of these
specifications.

 Specified the RDF/XML or RDF/JSON standards for notification query
formats.

 Added explanations to API usage examples.

 Added explanations of RDF and ucode as appendices.

 Corrected inconsistencies in notation and layout.

6/XX/2014 2.0 draft  Revised security management commands.

 Added function of specifying null value to request automatic ucode issuing.

 Eliminated APIs with very low frequency of use (triple operation API of
SPARQL, map operation API, and user group operation API)

 Changed the JSON response format of REST-based API from RDF/JSON
to JSON-LD.

 Changed RDF data exchanging API parameters and search API responses
for consistency with the rules of Linked Data Platform [49].

 Moved portions concerning specific vocabularies to appendices for
improved maintainability.

 Added vocabulary for access control description and pharmaceutical
vocabulary.

 Revised geospatial object vocabulary.

- 12 -

2. ODDP data standards

 The data standards for open data distribution platform systems (hereinafter "ODDP data

standards") are common standards concerning the data model, data representation

formats, and vocabularies for distribution and linking of public data across multiple

industries using open data distribution platform systems. The ODDP data standards cover

the areas below.

2.1. Data model

 A data model is a model for simple and expandable descriptions of public data. The

data model under these specifications is as follows.

 The model used is RDF [37].

 Ucode [16] is used for identifiers of public data and the objects, organizations,

places, etc. referred to by the data.

 Several identifier systems are in place at present, including ISBN, ISSN, and

Digital Object Identifiers (DOI). In cases where those can be represented using

Uniform Resource Identifiers (URI), that system is used.

 To maintain consistency with the RDF model, ucode is represented in the URN

format [36].

2.2. Data representation formats

 A data representation format is a machine-readable format for the representation of

public data based on the RDF model. The data representation formats under these

specifications are as follows.

 RDF/XML [1]

 Turtle RDF-turtle

 N-Triples [29]

 Notation3 [4]

 JSON-LD [51]

2.3. Vocabulary

 A vocabulary is information corresponding to a dictionary for the sake of a common

understanding of the meaning of data. The individual elements comprising a vocabulary

are called "terms." A term that is generally used as a predicate is called a "property,"

while a term that is generally used as an object is called a "class" if it represents a group

of referents, or an "instance" if it represents a member of a class.

 Individual identification of vocabulary items is made possible by assigning ucodes.

 Vocabulary items can be added as needed, and the relationships among them can be

described.

 The metadata needed for vocabulary definitions is specified by DCMI Metadata Terms

[20]. In these specifications, we recommend including the following metadata in

vocabulary definitions, based on that resource.

- 13 -

 Strongly recommended metadata

- Name: A token appended to the URI of a DCMI namespace to create the URI of

the term.

- Label: The human-readable label assigned to the term.

- URI: The Uniform Resource Identifier used to uniquely identify a term.

- Definition: A statement that represents the concept and essential nature of the

term.

- Type of Term: The type of term as described in the DCMI Abstract Model

 Recommended metadata

- Comment: Additional information about the term or its application.

- See: Authoritative documentation related to the term.

- References: A resource referenced in the Definition or Comment.

- Refines: A Property of which the described term is a Sub-Property.

- Broader Than: A Class of which the described term is a Super-Class.

- Narrower Than: A Class of which the described term is a Sub-Class.

- Has Domain: A Class of which a resource described by the term is an Instance.

- Has Range: A Class of which a value described by the term is an Instance.

- Member Of: An enumerated set of resources (Vocabulary Encoding Scheme) of

which the term is a Member.

- Instance Of: A Class of which the described term is an instance.

- Version: A specific historical description of a term.

- Equivalent Property: A Property to which the described term is equivalent

 A list of vocabulary for reference when describing data under these specifications is

provided in Appendix C.

- 14 -

3. Overview of ODDP API

 The API for open data distribution platform systems (hereinafter "ODDP API") consists

of the following eight functions. These are shown in Fig. 3.1. The first function consists

of commands based on the SPARQL [18, 28, 30] specifications, and the other seven

functions are commands based on REST.

1. SPARQL-based commands

 Commands based on the SPARQL protocol [18, 28, 30].

2. Traceability and real-time data management commands

 Commands for implementation of public data operations that involve time-series

data processing, such as traceability information, event logs, and real-time data, by

user programs.

3. Geographic data management commands

 Commands for implementation of public data operations that involve geographic

data processing by user programs.

4. Security management commands

 Commands for implementation of security operations, such as user management and

access control, by user programs.

5. Vocabulary management commands

 Commands for implementation of vocabulary management by user programs.

6. Notification management commands

 Commands for user programs to use functions that provide notifications to the user

programs from ODDP systems in response to registration and updating of public

data.

7. Triple management commands

 Commands for simplified operations with RDF triples by user programs, for the sake

of efficiency in user programs based on small devices such as sensors and smart

meters.

8. Identification resolution commands

 Commands for user programs to use functions to resolve the storage location of

public data from ucode by user programs.

 Below, this chapter discusses common specifications related to the ODDP API.

- 15 -

Fig. 3.1. Configuration of open data distribution platform systems

3.1. rotocol

 The ODDP API is defined under the HTTP/1.1 [47] protocol.

3.2. unctions corresponding to HTTP methods

 In general, the correspondence between functions and HTTP method names in the

ODDP API is basically according to RESTful APIs, as indicated in Table 3.2.1.

Table 3.2.1. elationship between functions and HTTP methods

HTTP method Function

GET Retrieval or searching

POST New object registration

PUT Updating data

DELETE Deletion of data

3.3. TTP status codes

 Table 3.3.1 shows the status codes returned by an open data distribution platform

system using the ODDP API.

- 16 -

Table 3.3.1. tatus codes of ODDP API

Status code Meaning

200 OK Completed successfully.

201 Created A new resource has been created successfully.

204 No Content Completed successfully (if there is no response message).

400 Bad Request Parameter error.

401 Not Authenticated Unauthenticated status, or authentication failed.

403 Forbidden Authorization error.

404 Not Found The requested resource does not exist, or the function is not
defined in these specifications.

409 Conflict Registration failed because of an overlap with data that has
already been registered.

413 Request Entity Too Large The request exceeds the limits of the system.

500 Internal Error An internal error of the system.

501 Not Implemented The requested function is not supported. (This code is
returned if a requested command is included in these
specifications but has not been implemented.)

3.4. Request and response formats

 The following matters are specified with regard to messages exchanged between user

programs and open data distribution platform systems.

 Format of message body and method of specification

 Request success or failure and content of message body

 Response paging method

 Rules on URI expressions

 Matters based on SPARQL standards should conform to the SPARQL 1.1 standards

[30], and RDF data sending and receiving and response paging methods should

conform to Linked Data Platform [49], Linked Data Platform Paging [50], etc.

 The details are discussed below.

3.4.1. Format of message body

 The data format of the message body portion of a request and response should be as

follows.

• When sending and receiving RDF data

 The format is Turtle [46], RDF/XML [1], JSON-LD [51], N-Triples [29], or

Notation3 [46].

• Otherwise

 The format is JSON [23] or XML [5].

- 17 -

 To identify the RDF data format when a user program or open data distribution

platform system sends a query or response with a message body consisting of RDF

data, the HTTP header should include a Content-Type header having values as shown

in Table 3.4.1.

 The methods for specifying the data format for the response that the user program

obtains from the open data distribution platform system are as follows.

• When SPARQL-based commands are used (section 4.1)

 Specified under section 4.1 (SPARQL-based commands).

• When RDF data format is specified

 Any of the following. We recommend the first option. The default response format

is Turtle.

 Include an Accept header having any of the values shown in Table 3.4.1 in the

HTTP header.

 Add .json or .xml at the end of the requested URL. Adding .json means that the

JSON-LD format is specified, and adding .xml means that the RDF/XML

format is specified.

 Add format=json or format=xml to the requested URL query string. Adding

format=json means that the JSON-LD format is specified, and adding

format=xml means that the RDF/XML format is specified.

• Otherwise

 Any of the following. We recommend the first option. The default response format

is JSON.

 Add .json or .xml at the end of the requested URL.

 Add format=json or format=xml to the requested URL query string.

Table 3.4.1. Header values indicating RDF graph expression format

Header value Explanation

application/rdf + xml RDF/XML [1]

application/json JSON-LD [51]

text/plain N-Triples [29]

text/rdf + n3 Notation3 [46]

text/turtle Turtle

 When sending structured data that is not in RDF data format by the POST or PUT

method, the user program should use the same format as the requested response

format. For example, when requesting a response in XML format, the structured data

should also be written in XML.

3.4.2. Request success or failure and message body content

 When the open data distribution platform system has processed a received request

correctly, the status code returned is 200, 201, or 204. If there is a response message,

- 18 -

it is contained in the message body as a string of characters in JSON or XML. If it is

provided in XML format, the root element of the data is <api_response>.

 When the open data distribution platform system has been unable to process a

received request correctly, the returned status code is not of the 200 series. In this case,

the message body contains a message having the parameter shown in Table 3.4.2. If it

is provided in XML format, the root element of the error message is <error_response>.

Table 3.4.2. Error message parameters

Parameter name Format Parameter value

msg xsd:string Error message

3.4.3. Rules on response paging

 Upon receiving a request for a search, the open data distribution platform system can

divide the response (paging) according to the system's processing capabilities.

However, under the Linked Data Platform Paging [50] conventions, the HTTP header

should include a Link header and state the URL of the divided response destination.

 The Link header should have the following values. Parameter <P> is the URL of the

divided response destination, and <r> has one of the values shown in Table 3.4.3.

Link < P >; rel='< r >'

Table 3.4.3. Parameters of error messages for paging

Value of <r> Meaning Required?

first First page of paging

next Next page of paging Yes

prev Previous page of paging

last Last page of paging

3.4.4. Rules on URI notation

 The following applies to URI notation used in requests and responses.

 In places where a format based on standards such as SPARQL 1.1, RDF/XML, or

JSON-LD is specified, the URI notation method required under those standards

should be used.

 In other places, a URI should be enclosed in angle brackets (< >). However, except

in the case of SPARQL-based commands (section 4.1), the following alternate

notation may be used to avoid URL encoding if the request includes a well-known

URI; and in such cases, the URI in alternate notation must not be enclosed in angle

brackets.

- 19 -

 If the URI is ucode URN, a string of characters with the added prefix "ucode_"

may be used as alternate notation for the ucode value. For example, instead of

"urn:ucode:_00001C00000000000001000000010000", the notation

"ucode_00001C00000000000001000000010000" may be used.

 If the URI is vocabulary indicated in section 2.3 (Vocabulary), a string of

characters connected with an underscore (_) may be written in place of the

local name and Qname indicated in the alias URI space. For example, instead of

"http://purl.org/dc/elements/1.1/title", the notation "dc_title" may be used.

3.5. Data formats

 In these specifications, the data formats listed in Table 3.5.1 are used in addition to the

data formats provided in XML Schema [52].

Table 3.5.1. Data formats defined in these specifications

Name of format Explanation

hash hash (associative array)

RDF RDF/XML or JSON-LD

<format name> [] <format name> list (array)

 When specifying a list with parameter values of the GET method, the items should be

separated by commas.

 In XML representation of hash data, the key is the tag name, and the value is the tag

value. List values for a certain key are represented by repetition of the tag name

indicating that key. For example, the following are representations of data of the same

structure in XML and JSON.

3.6. RDF expressions requesting automatic ucode issuing

 In the commands of sections 4.3.2 (4.3.2 (Registering new place information), 4.4.2

(Registering new roles), 4.6.2 (Creating new terms), and 4.7.2 (Creating new public

data), a request for automatic ucode issuing for RDF/XML or JSON-LD resources

XML representation

JSON representation

- 20 -

contained in the message body can be sent to the open data distribution platform system

if the following URI or null value is specified (empty string if RDF/XML, or null if

JSON-LD). Note that <val> is an alphanumeric string that begins with alphabetic

characters.

urn:ucode:_?<val>

 The open data distribution platform system performs the following actions upon

receiving this request.

• If a URI of the form urn:ucode:_?<val> is specified

 A ucode is issued for each of the specified variables, and RDF data is registered with

the corresponding portion converted into URI notation of the ucode. The result is a

hash value having the variable name specified by <val> as key and the

corresponding ucode as its value.

• If a null value is specified

 A ucode of null value quantity is issued, and RDF data is registered with the

corresponding portion converted into URI notation of the ucode. The result is the

issued ucode array.

 It is not permissible to mix a URI of the form urn:ucode:_?<val> and a null value

within the same command. The open data distribution platform system cannot accept a

request that mixes both of these, and status code 400 is returned.

3.7. Streams API

 When the parameter "stream" is specified in search and view commands under section

4.2 (Traceability and real-time data commands) or section 4.7 (Triple management

commands), the connection is continued and results are returned as each value is

updated, based on Streams API [41]. If the value of the stream parameter is 0, the

maximum allowed time of the server is specified. The maximum time for continuing

the connection under Streams API is implementation-dependent.

3.8. Other common provisions

 In addition to the above, these specifications include the following common provisions.

 The method for approval of applications is based on OAuth 2.0 [25].

 Authentication is performed using an authentication key issued under a separately

specified method.

 The necessary encoding for conventions such as HTTP and URL is performed as

needed.

 If data including multi-byte characters is returned in JSON format, this should be

encoded according to JSON specifications.

- 21 -

4. Details of ODDP API

 This chapter provides details of the ODDP API.

4.1. SPARQL-based commands

 SPARQL-based commands provide the functions of registering, updating, deleting,

viewing, and searching for public data, based on the SPARQL 1.1. protocol [18, [28],

[30]. These commands are listed in Table 4.1.1. Details concerning each command are

provided below.

Table 4.1.1. List of SPARQL-based commands

URL path HTTP method Meaning

/api/v1/sparq1 GET Issuing a query under SPARQL 1.1

/api/v1/sparq1 POST Issuing a query under SPARQL 1.1

/api/v1/rdf-graph-store GET Viewing an RDF graph

/api/v1/rdf-graph-store POST Adding an RDF graph

/api/v1/rdf-graph-store PUT Updating an RDF graph

/api/v1/rdf-graph-store DELETE Deleting an RDF graph

 An API where the URL path is /api/v1/rdf-graph-store is an API according to the

SPARQL 1.1 Graph Store HTTP Protocol [43]. However, because this type of API

supports only operations in RDF graph units, APIs that can operate in units of RDF

data triples (or partial graphs that are sets of triples) are added. The URL path of the

latter is /api/v1/rawdata.

 When using named graphs, the RDF graphs are identified using the API graph

parameters stated in this section. When not using named graphs, either graph

parameters are not used, or default parameters are used.

 Ucodes cannot be automatically issued when using APIs under this section.

4.1.1. Issuing queries based on SPARQL 1.1: GET method

Functional summary:

 The HTTP GET method is used to issue queries based on SPARQL 1.1.

Method:

 GET

URL path:

 /api/v1/sparql

Restrictions:

 None. Anyone can make a request.

Parameters:

 As shown in Table 4.1.2.

- 22 -

Table 4.1.2. Parameters for issuing queries based on SPARQL 1.1 (GET method)

Parameter name Format Explanation

query xsd:string URL encoded SPARQL query

Required HTTP headers:

 The requested response format should be set as Accept. The parameters that may be

specified when issuing SELECT operations under SPARQL 1.1 are stated in Table 4.1.3;

the parameters that may be specified when issuing CONSTRUCT or DESCRIBE

operations are stated in Table 4.1.4; and the parameters that may be specified when issuing

ASK operations are stated in Table 4.1.5.

Table 4.1.3. Accept header values specifying response format for SELECT operations

Accept header value Explanation

appliction/sqarql-results+xml Response based on SPARQL Query Results XML Format [2]

application/sparql-results+json Response based on SPARQL Query Results JSON Format [48]

Status codes:

 As shown in Table 4.1.6.

Table 4.1.4. Accept header values specifying RDF graph format of response

Accept header value Explanation

application/rdf+xml RDF/XML [1]

text/plain N-Triples [29]

text/rdf+n3 Notation3 [4]

text/turtle Turtle [46]

Table 4.1.5. Accept header values specifying binary value format of response

Accept header value Explanation

application/sparql-results+xml Response based on SPARQL Query Results XML
Format [2]

text/boolean Text expression (true/false)

Responses:

 The responses are as follows.

• Responses to SELECT operations are either of the following, based on the Accept

header value.

 Response based on SPARQL Query Results JSON Format [48]

 Response based on SPARQL Query Results XML Format [2]

• Responses to CONSTRUCT and DESCRIBE operations are RDF graph data. The

format is as specified by the Accept header value.

- 23 -

• Responses to ASK operations are either of the following, based on the Accept header

value.

 Response based on SPARQL Query Results XML Format [2]

 Text expression, true or false

Table 4.1.6. Status codes when issuing queries based on SPARQL 1.1 (GET method)

Status code Meaning

200 OK Completed successfully.

400 Bad Request Incorrect query.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request issuing a SPARQL query to obtain the identifier

of a book along with its author's name, and the response. The GET method query

parameter value is URL encoding of the following SPARQL query.

 PREFIX dc: <http://purl.org/dc/elements/1.1/>

 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

 SELECT ?book ?name WHERE {

 ?book dc:creator ?who .

 ?who foaf:name ?name . }

Request

- 24 -

4.1.2. Issuing queries based on SPARQL 1.1: POST method

Functional summary:

 The HTTP POST method is used to issue queries under SPARQL 1.1.

Method:

 POST

URL path:

 /api/v1/sparql

Restrictions:

 None. Anyone can make a request.

Parameters:

 The parameters shown in Table 4.1.7 are included in the message body.

Response

- 25 -

Table 4.1.7. Parameters for issuing queries based on SPARQL 1.1 (POST method)

Parameter name Format Explanation

query xsd:string URL encoded SPARQL query

Required HTTP headers:

 The requested response format should be specified in the Accept header. The method is

the same as stated in section 4.1.1 (Issuing queries based on SPARQL 1.1: GET method).

(See Tables 4.1.3, 4.1.4, and 4.1.5.)

Status codes:

 As shown in Table 4.1.8.

Table 4.1.8. Status codes when issuing queries based on SPARQL 1.1 (POST method)

Status code Meaning

200 OK Completed successfully.

400 Bad Request Incorrect query.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The responses are as follows.

• Responses to SELECT operations are either of the following, based on the Accept

header value.

 Response based on SPARQL Query Results JSON Format [48]

 Response based on SPARQL Query Results XML Format [2]

• Responses to CONSTRUCT and DESCRIBE operations are RDF graph data. The

format is as specified by the Accept header value.

• Responses to ASK operations are either of the following, based on the Accept header

value.

 Response based on SPARQL Query Results XML Format [2]

 Text expression, true or false

API usage example

 The following is an example of a request issuing a SPARQL query to obtain the identifier

of a book along with its author's name, and the response. Here, URL encoding of the

request is omitted for the sake of readability.

- 26 -

4.1.3. Viewing RDF graphs

Functional summary:

 Viewing of RDF graphs.

Request

Response

- 27 -

Method:

 GET

URL paths:

 /api/v1/rdf-graph-store?graph=<graph>

 /api/v1/rdf-graph-store?default

Restrictions:

 None. Anyone can make a request.

Parameters:

 The parameters are as shown in Table 4.1.9.

Table 4.1.9. RDF graph viewing parameters

Parameter
name

Default value Explanation

graph (?default
specified)

URI identifying the RDF graph to be viewed. Based on the rules of [43], the
URI is not enclosed in angle brackets.

Required HTTP headers:

 The response format should be specified in the Accept header. The method is the same as

CONSTRUCT operations under section 4.1.1 (Issuing queries based on SPARQL 1.1:

GET method). (See Table 4.1.4.)

Status codes:

 As shown in Table 4.1.10.

Responses:

 Representation of the RDF graph encoded in the format specified in the Accept header.

Table 4.1.10. Status codes when viewing RDF graphs

Status code Meaning

200 OK Completed successfully.

400 Bad Request Incorrect parameter values.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to view a currently registered RDF graph, along

with the response.

- 28 -

4.1.4. Adding RDF graphs

Functional summary:

 Adding of RDF graphs.

Method:

 POST

URL paths:

 /api/v1/rdf-graph-store?graph=<graph>

 /api/v1/rdf-graph-store?default

Restrictions:

 Users having update authority for any RDF graph can make a request.

Parameters:

 The parameters shown in Table 4.1.11 are given as POST method query strings. The RDF

graph to be added is contained in the message body.

Request

Response

- 29 -

Table 4.1.11. RDF graph viewing parameters

Parameter
name

Default value Explanation

graph (?default
specified)

URI identifying the RDF graph to be added. Based on the rules of [43], the
URI is not enclosed in angle brackets.

Required HTTP headers:

 The format of the RDF graph to be added should be specified in the Content-type header.

For the parameter values that can be specified and their meanings, refer to Table 4.1.4 in

section 4.1.1 (Issuing queries based on SPARQL 1.1: GET method).

Status codes:

 As shown in Table 4.1.12.

Responses:

 If successful, the response body is empty.

Table 4.1.12. Status codes when adding RDF graphs

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to add an RDF graph, where Example Book #6 is

the name (dc:title) of a book indicated by the URI http://www.example.org/book/book6,

and the response.

Request

Response

- 30 -

4.1.5. Updating RDF graphs

Functional summary:

 Updating of RDF graphs. The RDF graph that is registered after completion of the request

operation is the graph specified by the request. RDF graphs that are not contained in the

request are deleted.

Method:

 PUT

URL paths:

 /api/v1/rdf-graph-store?graph=<graph>

 /api/v1/rdf-graph-store?default

Restrictions:

 Users having update authority for any RDF graph can make a request.

Parameters:

 The parameters shown in Table 4.1.13 are given as PUT method query strings. The RDF

graph to be updated is contained in the message body.

Table 4.1.13. RDF graph viewing parameters

Parameter

name
Default value Explanation

graph (?default
specified)

URI identifying the RDF graph to be updated. Based on the rules of [43], the
URI is not enclosed in angle brackets.

Required HTTP headers:

 The format of the RDF graph to be updated is specified in the Content-type header. For the

parameter values that can be specified and their meanings, refer to Table 4.1.4 in section

4.1.1 (Issuing queries based on SPARQL 1.1: GET method).

Status codes:

 As shown in Table 4.1.14.

Responses:

 If successful, the response body is empty.

Table 4.1.14. Status codes when updating RDF graphs

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to update the content of an RDF graph with the

information that Example Book #6 is the name (dc:title) of a book indicated by the URI

- 31 -

http://www.example.org/book/book6, and the response. Any other information in that

RDF graph is deleted.

4.1.6. Deleting RDF graphs

Functional summary:

 Deletion of RDF graphs. After implementation of this type of request, the RDF graph is

empty.

Method:

 DELETE

URL paths:

 /api/v1/rdf-graph-store?graph=<graph>

 /api/v1/rdf-graph-store?default

Restrictions:

 Users having update authority for any RDF graph can make a request.

Parameters:

 The parameters shown in Table 4.1.15 are given as query strings.

Request

Response

- 32 -

Table 4.1.15. RDF graph deletion parameters

Parameter
name

Default value Explanation

graph (?default
specified)

URI identifying the RDF graph to be deleted. Based on the rules of [43], the
URI is not enclosed in angle brackets.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.1.16.

Table 4.1.16. Status codes when deleting RDF graphs

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to completely delete an RDF graph, along with

the response.

4.2. Traceability and real-time data management commands

 Traceability and real-time data management commands provide functions needed for

event management, such as traceability.

 The matters subject to traceability management are called "events," and they are

basically identified with ucodes. Event types such as split, integrated, and transferred

events are identified by assigning ucodes as indicated in section C.18 (Event

vocabulary). Similarly, attributes related to events are managed using the vocabulary

indicated in section C.18 (Event vocabulary).

 These commands are listed in Table 4.2.1. Details concerning each command are

provided below.

Request

Response

- 33 -

Table 4.2.1. List of traceability and real-time data management commands

URL path HTTP method Meaning

/api/v1/events GET Searching for an event

/api/v1/events POST Registering an event

/api/v1/events/<targets> GET Viewing an event

/api/v1/events/<targets>/<properties> GET Viewing an event

/api/v1/events/<target> PUT Updating an event

/api/v1/events/<target>/<property> PUt Updating an event

/api/v1/events/<target> DELETE Deleting an event

/api/v1/events/<target>/<property> DELETE Deleting an event

/api/v1/trace/<target> GET Tracing forward or backward

4.2.1. Searching for events

Functional summary:

 Searching for an event.

Method:

 GET

URL path:

 /api/v1/events

Restrictions:

 None. Anyone can make a request.

Parameters:

 The parameters are as shown in Table 4.2.2. They are given in the form of <paramN> =

<valueN>. If multiple parameters are specified, this is an AND search.

Table 4.2.2. Event search parameters

Parameter name Default value Explanation

paramN (not specified) Name of parameter for searching

valueN (not specified) Value of parameter for searching

 At least one pair of <paramN>, <valueN> should be specified.

 <paramN> is a property URI indicating the public data attributes of the event source, or a

parameter under Table 4.2.3. Commas included in the URI value should be URL encoded.

If there are multiple parameter values, they should be separated by commas.

 The meaning of a request specifying an offset and limit is a request for the limit quantity

of search results, starting from the search result whose position corresponds to the offset

number when search results are ordered by time of event occurrence from newest to oldest

(ev:date).

- 34 -

Required HTTP headers:

 The requested RDF format should be specified in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.2.4.

Table 4.2.3. Event search parameters

Parameter
name

Format Explanation

target xsd:anyURI[] Event target identifier (ev:target, ev:source, ev:destination)

source xsd:anyURI[] Identifier of the source of event occurrence (ev:source)

destination xsd:anyURI[] Identifier (ev:destination) generated as a result of event occurrence

owner xsd:anyURI[] Identifier of event originator (ev:owner, ev:startOwner, ev:endOwner)

after xsd:datetime Time of event occurrence (ev:date) is after this value.

before xsd:datetime Time of event occurrence (ev:date) is before this value.

place xsd:anyURI[] Identifier of the place of event occurrence (ev:place)

description xsd:string Text describing the event (ev:description/partial match retrieval)

stream xsd:integer If this parameter is specified, the connection based on Stream API is
continued for the specified number of seconds. (See section 3.7, Streams
API.)

offset xsd:integer Offset value for search results. If this parameter is omitted, the results
returned will start with the first value.

limit xsd:integer Number of search results to be returned. If this parameter is omitted, the
limit will be set by the ODDP system.

Responses:

 The response is RDF data of the event list, in the format specified by the Accept header.

 If the response is divided (paging), a Link header should be added to the HTTP header,

based on section 3.4.3 (Rules on response paging).

API usage example

 The following is an example of a request to search for an event, where the source of event

occurrence is an entity indicated by the URI

urn:ucode:_00001C00000000000001000000100800, and the response.

Request

- 35 -

Table 4.2.4. Status codes when searching for events

Status code Meaning

200 OK Completed successfully.

400 Bad Request There is no <param1>, <value1> pair.

Incorrect <paramN>.

404 Not Found No event meeting the search conditions has been registered in
the ODDP system.

413 Request Entity Too Large The limit value is too high.

500 Internal Error An error occurred within the ODDP system.

Response

- 36 -

4.2.2. Registering new events

Functional summary:

 Registration of new events. If the date and time of event occurrence is not specified, the

current time is used.

Method:

 POST

URL path:

 /api/v1/events

Restrictions:

 Access by a user who is authorized to register events for the identifier of the source of

event occurrence.

Parameters:

 The event data in RDF format is contained in the message body.

 Automatic ucode issuing can be requested by including a URI having the format of

urn:ucode:_?<val>. (See section 3.6, RDF expressions requesting automatic ucode issuing.)

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.2.5.

Table 4.2.5. Status codes when registering new events

Status code Meaning

201 Created Completed successfully.

400 Bad Request RDF is not specified by the parameters.

409 Conflict The identifier of the specified event has already been registered in the
ODDP system.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is the structured data shown in Table 4.2.6, represented in JSON or XML

format.

Table 4.2.6. Response format for new event registration

Parameter
name

Format Explanation

ucode hash Hash data where the key is the specified variable name, and the value is the issued
ucode.

- 37 -

API usage example

 The following is an example of a request to register an event to the effect that "three items

were generated from an entity represented by

urn:ucode:_00001C00000000000001000000100124, at a place represented by the URI

urn:ucode:_00001C00000000000001000000100A01, at 13:00 on March 7, 2012," and the

response.

 Here, in addition to the event ucode, the response returns ucodes that are provided for the

three generated items.

Request

- 38 -

4.2.3. Viewing events

Functional summary:

 Viewing events.

Method:

 GET

URL path:

 /api/v1/events/<targets>

  <target>: Event identifier. (xsd:anyURI[] format)

Restrictions:

 Access by a user who is authorized to view information concerning the events specified by

<targets>.

Parameters:

 As shown in Table 4.2.7.

Table 4.2.7. Event viewing parameters

Parameter
name

Format Explanation

stream xsd:integer If this parameter is specified, the connection based on Stream API is continued
for the specified number of seconds. (See section 3.7, Streams API.)

Required HTTP headers:

 The requested RDF format should be stated in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.2.8.

Response

- 39 -

Responses:

 The response is RDF data of the event list, in the format specified by the Accept header.

Table 4.2.8. Status codes when viewing events

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> are not specified.

404 Not Found No corresponding event can be found.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to view event information indicated by the URI

urn:ucode:_00001C00000000000001000000100800, and the response.

Request

Response

- 40 -

4.2.4. Viewing events: Specifying properties

Functional summary:

 Specifying property values and viewing an event.

Method:

 GET

URL path:

 /api/v1/events/<targets>/<properties>

  <targets>: Event identifiers. (xsd:anyURI[] format)

  <properties>: Property identifiers. (xsd:anyURI[] format)

Restrictions:

 Access by a user who is authorized to view information concerning the events specified by

<targets>.

Parameters:

 As shown in Table 4.2.9.

Table 4.2.9. Parameters for event viewing when specifying properties

Parameter
name

Format Explanation

stream xsd:integer If this parameter is specified, the connection based on Stream API is continued for
the specified number of seconds. (See section 3.7, Streams API.)

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.2.10.

Responses:

 The response is RDF data of the event list, in the format specified by the Accept header.

Table 4.2.10. Status codes when viewing events and specifying properties

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> are not specified.

404 Not Found No corresponding event can be found.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to obtain the time of occurrence (ev:date) of an

event indicated by the URI urn:ucode:_00001C00000000000001000000100800, and the

response.

- 41 -

4.2.5. Updating events

Functional summary:

 Updating events.

Method:

 PUT

URL path:

 /api/v1/events/<target>

  <target>: Event identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update the event corresponding to <target>.

Request

Response

- 42 -

Parameters:

 Event update information in RDF format is contained in the message body.

 The subject of the update information is consistent with <target>.

 After the command is completed, the values of predicates contained in the update

information are completely consistent with the specified update information,

including quantities.

 The values of predicates that are not included in the update information are not

changed.

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.2.11.

Responses:

 If successful, the response body is empty.

Table 4.2.11. Status codes when updating events

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

403 Forbidden Access is not authorized.

404 Not Found No corresponding event identifier has been registered in the ODDP
system.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to update the place of occurrence (ev:place) of an

event indicated by the URI urn:ucode:_00001C00000000000001000000100800 to the

place indicated by the URI urn:ucode:_00001C00000000000001000000100A01, and the

response.

- 43 -

4.2.6. Updating events: Specifying properties

Functional summary:

 Specifying property values and updating events.

Method:

 PUT

URL path:

 /api/v1/events/<target>/<property>

  <target>: Event identifier. (xsd:anyURI format)

  <property>: Property identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update the event corresponding to <target>.

Parameters:

 The RDF data representing the event information to be updated (called the "update event

data") is contained in the message body.

 The subject of the update event data is consistent with <targets>.

 After the command is completed, the property values specified by <properties> in the

event information specified by <targets> will be completely consistent with the

update event data. Property values not specified by <properties> are not changed,

even if they are included in the update event data.

Request

Response

- 44 -

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.2.12.

Responses:

 If successful, the response body is empty.

Table 4.2.12. Status codes when updating events and specifying properties

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

403 Forbidden Access is not authorized.

404 Not Found No corresponding event identifier has been registered in the ODDP
system.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to update the place of occurrence (ev:place) of an

event indicated by the URI urn:ucode:_00001C00000000000001000000100800 to the

place indicated by the URI urn:ucode:_00001C00000000000001000000100A01, and the

response.

Request

- 45 -

4.2.7. Deleting events

Functional summary:

 Deleting events.

Method:

 DELETE

URL path:

 /api/v1/events/<target>

  <target>: Event identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to delete the event corresponding to <target>.

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.2.13.

Table 4.2.13. Status codes when deleting events

Status code Meaning

204 No Content Completed successfully.

403 Forbidden Access is not authorized.

404 Not Found No corresponding event identifier has been registered in the ODDP
system.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to delete an event indicated by the URI

urn:ucode:_00001C00000000000001000000100800, and the response.

Response

- 46 -

4.2.8. Deleting events: Specifying properties

Functional summary:

 Specifying property values and deleting events. Event information other than the specified

properties will remain.

Method:

 DELETE

URL path:

 /api/v1/events/<target>/<property>

  <target>: Event identifier. (xsd:anyURI format)

  <property>: Property identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to delete the event corresponding to <target>.

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.2.14.

Table 4.2.14. Status codes when deleting events and specifying properties

Status code Meaning

204 No Content Completed successfully.

403 Forbidden Access is not authorized.

404 Not Found No corresponding event identifier has been registered in the ODDP
system.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

Request

Response

- 47 -

API usage example

 The following is an example of a request to delete an event indicated by the URI

urn:ucode:_00001C00000000000001000000100800, and the response.

4.2.9. Performing traces

Functional summary:

 Tracing forward or backward with the specified target as the starting point, and returning a

list of events as a result.

 A forward or backward trace is obtained by obtaining the properties of ev:source and

ev:destination between identifiers.

Method:

 GET

URL path:

 /api/v1/trace/<target>

  <target>: Identifier of the event object or event which is the starting point of the trace.

(xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to view information concerning the public data or

event specified by <target>.

Parameters:

 As shown in Table 4.2.15.

Table 4.2.15. Parameters for performing a trace

Parameter name Format Explanation

direction xsd:string Trace parameter, taking the following values. If omitted, the default is
forward.

 forward: Trace forward.

 back: Trace backward.

limit xsd:integer Number of layers to trace. If omitted, the default is 1 layer.

Request

Response

- 48 -

Required HTTP headers:

 The requested RDF format should be stated in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.2.16.

Table 4.2.16. Status codes when performing a trace

Status code Meaning

200 OK Completed successfully.

400 Bad Request <target> is not specified.

404 Not Found No corresponding public data or event can be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the event list, in the format specified by the Accept header.

API usage example

 The following is an example of a request to trace an event indicated by the URI

urn:ucode:_00001C00000000000001000000100800 in the forward direction for up to two

layers and output the relevant trace information, and the response.

Request

- 49 -

4.3. Geographic data management commands

 Geographic data management commands are commands to provide the functions

needed for processing of geographic data such as GIS.

 Places are basically identified by ucodes, and information on the attributes of places is

managed using the vocabularies, etc. indicated in sections C.8 (GeoSPARQL

vocabulary) and C.15 (Geospatial vocabulary).

 The basic region indicating a place (geometric data) is represented by linking its

identifying ucode with the property ug:region. This property can take the values

indicated in Table 4.3.1. If the data type is omitted, the default is Well Known Text.

Response

- 50 -

Table 4.3.1. Geometric data representation format

Data type Specified data type

Well Known Text [19] ogc:wktLiteral

GML [45] ogc:gmlLiteral

GeoJSON [9] ug:GeoJSONLiteral

 For example, the following is a representation in Notation3 format (prefix declaration

omitted) to the effect that the place specified by URI

urn:ucode:_00001C00000000000001000000100800 is a point at latitude 35.67 degrees

north, longitude 139.76 degrees east.

• If the Well Known Text format is used for geometric data:

 <urn:ucode: 00001C00000000000001000000100800> ug:region

 "<http://www.opengis.net/def/crs/OGC/1.3/CRS84> Point(35.67

 139.76)"^^ogc:wktLiteral .

• If the GML format is used for geometric data:

 <urn:ucode: 00001C00000000000001000000100800> ug:region "<gml:Point

 srsName=\"http://www.opengis.net/def/crs/OGC/1.3/CRS84\">

 <gml:coordinates>139.76 35.67</gml:coordinates>

 </gml:Point> \"^^ogc:gmlLiteral .

• If the GeoJSON format is used for geometric data:

 <urn:ucode: 00001C00000000000001000000100800> ug:region

 "{\"typen":\"Pointn", \"coordinatesn": \"[139.76 35.67]\"

 }"^^ug:geoJSONLiteral .

 These commands are listed in Table 4.3.2. Details concerning each command are

provided below.

Table 4.3.2. List of geographic data management commands

URL path HTTP method Meaning

/api/v1/places GET Searching for place information

/api/v1/places POST Registering place information

/api/v1/places/<targets> GET Viewing place information

/api/v1/places/<targets>/<properties> GET Viewing place information

/api/v1/places/<target> PUT Updating place information

/api/v1/places/<target>/<property> PUT Updating place information

/api/v1/places/<target> DELETE Deleting place information

/api/v1/places/<target>/<property> DELETE Deleting place information

/api/v1/places/<target>/ug_consistsOf PUT Moving the inclusion relationships of place
information

- 51 -

4.3.1. Searching for place information

Functional summary:

 Searching for place information.

Method:

 GET

URL path:

 /api/v1/places

Restrictions:

 None. Anyone can make a request.

Parameters:

 The parameters are as shown in Table 4.3.3. They are given in the form of <paramN> =

<valueN>. If multiple parameters are specified, this is an AND search.

Table 4.3.3. Place information search parameters

Parameter name Default value Explanation

paramN (not specified) Name of parameter for searching

valueN (not specified) Value of parameter for searching

 At least one pair of <paramN>, <valueN> should be specified. <paramN> is any of the

following. If multiple properties are specified, this is an AND search.

1. Target: An identifier of the searched place, its parameter value having the format of

xsd:anyURI[]. Commas included in the URI value should be URL encoded. If there

are multiple targets, they should be separated by commas.

2. Predicate: Used when specifying a predicate whose subject is a value of item 4 or item

5 below. Its parameter value has the format of xsd:anyURI[]. If omitted, the default is

ug:region.

3. Offset, limit: The parameter value is xsd:integer. The meaning is a request for the

limit quantity of search results, starting from the search result whose position

corresponds to the offset number. If parameters are set for item 4 below, this means a

request for the limit quantity of search results, starting from the search result whose

position corresponds to the offset number when search results are ordered by

proximity to the specified point.

4. Used when a point and radius are specified and a search is performed for identifiers of

places contained within that circle. The parameters are combinations of those in Table

4.3.4.

- 52 -

Table 4.3.4. Place information search parameters

Parameter
name

Format Explanation

lat xsd:double Latitude in WGS84. Cannot be omitted.

lon xsd:double Longitude in WGS84. Cannot be omitted.

floor xsd:double[] Number of floors. Upper and lower limits are specified, separated with
commas. If the upper and lower limits are equal, this is unspecified if
omitted. (Either floor or alt is specified, but not both.)

alt xsd:double[] Height (m). Upper and lower limits are specified, separated with
commas. Unspecified if omitted. (Either floor or alt is specified, but not
both.)

radius xsd:double Search radius (m). Cannot be omitted.

5. Used when a shape such as a polygon is specified and a search is performed for

identifiers of contained, containing, or overlapping places. The parameter value is

Well Known Text (WKT) as prescribed by the Open Geospatial Consortium.

Table 4.3.5. Place information search parameters

Parameter name Format Explanation

intersect xsd:string (WKT) The parameter value overlaps with the specified region.

within xsd:string (WKT) The parameter value is completely contained within the
specified region.

contains xsd:string (WKT) The parameter value completely contains the specified
region.

6. Geo_format: Specifies the data type of geometric data. If this parameter is omitted,

the data type is ogc:wktLiteral (Well Known Text format).

7. Property URI indicating geospatial attributes.

Required HTTP headers:

 The requested RDF format should be specified in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.3.6.

Responses:

 The response is RDF data of the place list, in the format specified by the Accept header.

- 53 -

Table 4.3.6. Status codes when searching for place information

Status code Meaning

200 OK Completed successfully.

400 Bad Request There is no <param1>, <value1> pair.

Incorrect <paramN>.

404 Not Found No place information meeting the search conditions has been registered
in the ODDP system.

413 Request Entity
Too Large

The limit value is too high.

500 Internal Error An error occurred within the ODDP system.

 If the response is divided (paging), a Link header should be added to the HTTP header,

based on section 3.4.3 (Rules on response paging).

API usage example

 The following is an example of a request to search for place identifiers contained in a

rectangle whose corners are the points (0,0), (2,0), (2,2), (0,2), and the response. For the

sake of readability, the WKT expression of the request is not URL encoded.

Request

- 54 -

4.3.2. Registering new place information

Functional summary:

 Registration of new place information.

Method:

 POST

URL path:

 /api/v1/places

Restrictions:

 Access by a user who is authorized to register new place information.

Parameters:

 The place registration data in RDF format is contained in the message body.

 Automatic ucode issuing can be requested by including a URI having the format of

urn:ucode:_?<val> in the RDF data. (See section 3.6, RDF expressions requesting

automatic ucode issuing.)

Response

- 55 -

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.3.7.

Responses:

 The response is the structured data shown in Table 4.3.8, represented in JSON or XML

format.

API usage example

 The following is an example of a request to register a point having the coordinates (1,1),

and the response.

Table 4.3.7. Status codes when registering new place information

Status code Meaning

201 Created Completed successfully.

400 Bad Request The parameters specify neither rdf nor params.

The parameters specify either rdf or params, target, num, but not both.

The key of <params> is incorrect.

The parameters specify both target and num.

409 Conflict The identifier of the specified place information has already been
registered in the ODDP system.

500 Internal Error An error occurred within the ODDP system.

Table 4.3.8. Response format for new place information registration

Parameter
name

Format Explanation

ucode hash Hash data where the key is the specified variable name, and the value is
the URI representation of the issued ucode.

- 56 -

4.3.3. Viewing place information

Functional summary:

 Viewing place information.

Method:

 GET

URL path:

 /api/v1/places/<targets>

  <targets>: Event identifiers. (xsd:anyURI[] format)

Restrictions:

 Access by a user who is authorized to view the place information specified by <targets>.

Parameters:

 None.

Request

Response

- 57 -

Required HTTP headers:

 The requested RDF format should be stated in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.3.9.

Table 4.3.9. Status codes when viewing place information

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> are not specified.

404 Not Found No corresponding place information can be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the place information list, in the format specified by the

Accept header.

API usage example

 The following is an example of a request to view the information of a place indicated by

the URI urn:ucode:_00001C00000000000001000000100800, and the response.

Request

Response

- 58 -

4.3.4. Viewing place information: Specifying properties

Functional summary:

 Specifying properties and viewing place information.

Method:

 GET

URL path:

 /api/v1/places/<targets>/<properties>

  <targets>: Place identifiers. (xsd:anyURI[] format)

  <properties>: Property identifiers. (xsd:anyURI[] format)

Restrictions:

 Access by a user who is authorized to view the place information specified by <targets>.

Parameters:

 None.

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Accept

header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.3.10.

Table 4.3.10. Status codes when viewing place information and specifying properties

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> or <properties> are not specified.

404 Not Found No corresponding place information can be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the place information list, in the format specified by the

Accept header.

API usage example

 The following is an example of a request to view the location information (ug:region) of a

place indicated by the URI urn:ucode:_00001C00000000000001000000100800, and the

response.

- 59 -

4.3.5. Updating place information

Functional summary:

 Updating place information.

Method:

 PUT

URL path:

 /api/v1/places/<target>

  <target>: Place identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update the place information corresponding to

<target>.

Request

Response

- 60 -

Parameters:

 Place update information in RDF format is contained in the message body.

 The subject of the update information is consistent with <target>.

 The values of predicates contained in the update information are completely

consistent with the specified update information, including quantities.

 The values of predicates that are not included in the update information are not

changed.

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.3.13.

Responses:

 If successful, the response body is empty.

Table 4.3.11. Status codes when updating place information

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

403 Forbidden Access is not authorized.

404 Not Found No corresponding place information identifier has been registered in the
ODDP system.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to update the location information (ug:region) of

a place indicated by the URI urn:ucode:_00001C00000000000001000000100800 to (1,1),

and the response.

Request

- 61 -

4.3.6. Updating place information: Specifying properties

Functional summary:

 Specifying properties and updating place information.

Method:

 PUT

URL path:

 /api/v1/places/<target>/<property>

  <target>: Place identifier. (xsd:anyURI format)

  <property>: Property identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update the place information corresponding to

<target>.

Parameters:

 The RDF data representing the place information to be updated (called the "update place

data") is contained in the message body.

 The subject of the update place data is consistent with <targets>.

 After the command is completed, properties specified by <properties> in the place

information specified by <targets> will be completely consistent with the update place

data. Property values not specified by <properties> are not changed, even if they are

included in the update place data.

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.3.12.

Responses:

 If successful, the response body is empty.

Response

- 62 -

Table 4.3.12. Status codes when updating place information and specifying properties

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

403 Forbidden Access is not authorized.

404 Not Found No corresponding place information identifier has been registered in the
ODDP system.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to update the location information (ug:region) of

a place indicated by the URI urn:ucode:_00001C00000000000001000000100800 to (1,1),

and the response.

Request

Response

- 63 -

4.3.7. Deleting place information

Functional summary:

 Deleting place information.

Method:

 DELETE

URL path:

 /api/v1/places/<target>

  <target>: Place identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to delete the place information corresponding to

<target>.

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.3.13.

Table 4.3.13. Status codes when deleting place information

Status code Meaning

204 No Content Completed successfully.

403 Forbidden Access is not authorized.

404 Not Found No corresponding place information identifier has been registered in
the ODDP system.

409 Conflict Deletion is impossible because of other registered place information
having a relationship of inclusion, equivalence, or adjacency, etc. with
this place information.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to delete a place indicated by the URI

urn:ucode:_00001C00000000000001000000100800, and the response.

- 64 -

4.3.8. Deleting attributes of place information

Functional summary:

 Specifying properties and deleting attributes of place information, or spatial metadata.

Place information other than the specified properties will remain.

Method:

 DELETE

URL path:

 /api/v1/places/<target>/<property>

  <target>: Place identifier. (xsd:anyURI format)

  <property>: Property identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update the place information corresponding to

<target>.

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.3.14.

Table 4.3.14. Status codes when deleting attributes of place information

Status code Meaning

204 No Content Completed successfully.

403 Forbidden Access is not authorized.

404 Not Found No corresponding place information identifier has been registered in the
ODDP system.

500 Internal Error An error occurred within the ODDP system.

Request

Response

- 65 -

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to delete location information (ug:region) from a

place indicated by the URI urn:ucode:_00001C00000000000001000000100800, and the

response.

4.3.9. Moving inclusion relationships of place information

Functional summary:

 Moving the inclusion relationships of place information. This is a special case of section

4.3.6 (Updating place information: Specifying properties).

Method:

 PUT

URL path:

 /api/v1/places/<target>/ug consistsOf

  <target>: Place identifier. (xsd:anyURI[] format)

Restrictions:

 Access by a user who is authorized to update the place information corresponding to

<target>.

Parameters:

 The values to be updated are contained in the message body as strings of characters in

JSON or XML format.

 After the command is completed, identifiers of places contained in <target> (having the

relationship of ug:consistsOf) will be completely consistent with the values contained in

the message body, including quantities.

Required HTTP headers:

 None

Status codes:

 As shown in Table 4.3.15.

Request

Response

- 66 -

Table 4.3.15. Status codes when moving inclusion relationships of place information

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

403 Forbidden Access is not authorized.

404 Not Found No corresponding place information identifier has been registered in the
ODDP system.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to update a place identifier contained in the place

indicated by the URI urn:ucode:_00001C00000000000001000000100800 to the following

two, urn:ucode: _00001C00000000000001000000100900 and urn:ucode:

_00001C00000000000001000000100901, and the response.

4.4. Security management commands

 Security management commands are commands for role-based implementation of

access control for the operations of registering, viewing, updating, and deleting data, or

CRUD (Create, Read, Update, Delete).

 The applications, data sets, and roles are defined below. The relationships between

applications, data sets, and roles are shown in Fig. 4.1.

 Application: Applications are entities that request operations on public data using

standard APIs, identified with access tokens issued by Oauth 2.0 [25]. These access

tokens serve as authentication keys when using security management commands and

Request

Response

- 67 -

access control functions provided by these functions. In general, this refers to an

individual application.

 Data set: Data sets are collections of one or more items of public data. They are

identified with URIs.

 Role: Roles are RDF graphs representing whether or not applications are permitted to

perform CRUD operations with regard to data sets. They are identified with URIs.

Fig. 4.1. Access control using security management commands

 A role is written using the vocabulary in section C.14 (Access control vocabulary) to

indicate whether or not CRUD operations are permitted for up to 1 application and 1

data set. Roles not included in the application in question are for all applications, and

roles not included in the data set in question are for all data sets.

 Roles should be evaluated according to the following sequence.

1. Roles where both the application and the data set are specified

2. Roles where only the application is specified

3. Roles where only the data set is specified

4. Roles where neither the application nor the data set is specified

 For example, Fig. 4.2 illustrates the following access control rules.

 All applications may view Data #1, Data #2, and Data #3.

 Applications having ConsumerKey = Key1 may update and delete Data #1 and

Data #2.

 Applications having ConsumerKey = Key2 may update Data #1, Data #2, and Data

#3. No other access is permitted.

Application (having access
tokens under Oauth 2.0)

Role (indicates
whether or not
each CRUD
operation is
permitted for a
data set)

- 68 -

Fig. 4.2. Example of access control statements

 These commands are listed in Table 4.4.1.

 When using security management commands and access control functions that provide

these functions, requests should be submitted by specifying the access token as the

value of the access_token query parameter, or by presenting the Oauth 2.0 access token

in the Authorization HTTP header.

 The implementation method of OAuth 2.0 is not prescribed in these specifications. This

is implementation-dependent. When providing these functions, the method for

obtaining the Oauth 2.0 access token should be stated.

 Details concerning each command are provided below.

Table 4.4.1. List of security management commands

URL path HTTP method Meaning

/api/v2/roles GET Searching for a role

/api/v2/roles POST Registering a new role

/api/v2/roles/<targets> GET Viewing a role

/api/v2/roles/<targets>/<properties> GET Viewing a role

/api/v2/roles/<targets> PUT Updating a role

/api/v2/roles/<targets>/<properties> PUT Updating a role

/api/v2/roles/<targets> DELETE Deleting a role

/api/v2/roles/<targets>/<properties> DELETE Deleting a role

/api/v2/datasets GET Searching for a data set

4.4.1. Searching for roles

Functional summary:

 Searching for roles.

- 69 -

Method:

 GET

URL path:

 /api/v2/roles

Restrictions:

 This only be performed by an application that is authorized to perform role searches, and

it can only obtain the roles for which it has viewing rights.

Parameters:

 The parameters are as shown in Table 4.4.2.

 They are given in the form of <paramN> = <valueN>. If multiple parameters are specified,

this is an AND search.

Table 4.4.2. Role search parameters

Parameter name Default value Explanation

paramN (not specified) Name of parameter for searching

valueN (not specified) Value of parameter for searching

 At least one pair of <paramN>, <valueN> should be specified.

 <paramN> is any of the following.

 A property URI indicating a role attribute; for example, odacl:hasReadPermission.

 Target: An identifier of the searched role, its parameter value having the format of

xsd:anyURI[]. Any commas included in the URI should be URL encoded. If there are

multiple targets, they should be separated by commas.

 Offset, limit: The parameter value is xsd:integer. The meaning is a request for the

limit quantity of search results, starting from the search result whose position

corresponds to the offset number.

 Property names in the role description.

Required HTTP headers:

 The requested RDF format should be specified in the Accept header, based on Table

3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.4.3.

- 70 -

Table 4.4.3. Status codes when searching for roles

Status code Meaning

200 OK Completed successfully.

400 Bad Request There is no <param1>, <value1> pair.

Incorrect <paramN>.

404 Not Found No role meeting the search conditions has been registered in
the ODDP system.

413 Request Entity Too Large The limit value is too high.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the role list, in the format specified by the Accept header.

 If the response is divided (paging), a Link header should be added to the HTTP header,

based on section 3.4.3 (Rules on response paging).

API usage example

 The following is an example of a request to check whether the application whose

acl:consumerKey is "01230123AAFF" has the authority to access the data set

<http://example.org/target>, and the response.

Request

- 71 -

4.4.2. Registering new roles

Functional summary:

 Registration of new roles.

Method:

 POST

URL path:

 /api/v2/roles

Restrictions:

 This can only be performed by an application that is authorized to register new roles.

Parameters:

 The role description in RDF format is contained in the message body.

Response

- 72 -

 Automatic ucode issuing can be requested by including a URI having the format of

urn:ucode:_?<val> or an empty value URI in the RDF data. (See section 3.6, RDF

expressions requesting automatic ucode issuing.)

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.4.4.

Table 4.4.4. Status codes when registering new roles

Status code Meaning

201 Created Completed successfully.

400

409

Bad Request

Conflict

The role is incorrect.

The identifier of the specified role has already been registered in the
ODDP system, or the described role conflicts with a role description that
has already been registered in the ODDP system.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is the structured data shown in Table 4.4.5, represented in JSON or XML

format.

Table 4.4.5. Response format for new role registration

Parameter
name

Format Explanation

ucode hash Hash data where the key is the specified variable name and the value is the URI
representation of the issued ucode, in cases where a URI with a variable name
was specified.

xsd:anyURI[] A string consisting of the URI representation of the issued ucode, in cases where
an empty value URI was specified or automatic ucode issuing was not specified.

counts xsd:integer Quantity of registered roles.

total xsd:integer Total quantity of registered roles.

API usage example

 The following is an example of a request to authorize an application having the Oauth

2.0 access token "CCCCCCCC" to perform viewing, updating, and deletion with regard

to a data set having the URI <http://example.org/sampleDataset>, and the response.

- 73 -

Request

Response

- 74 -

4.4.3. Viewing roles

Functional summary:

 Viewing role information.

Method:

 GET

URL path:

 /api/v2/roles/<targets>

  <targets>: Role identifiers. (xsd:anyURI[] format)

Restrictions:

 This can only be performed by a user who is authorized to view the roles specified by

<targets>.

Parameters:

 None.

Required HTTP headers:

 The requested RDF format should be stated in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.4.6.

Table 4.4.6. Status codes when viewing roles

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> are not specified.

404 Not Found No corresponding role can be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the role list, in the format specified by the Accept header.

API usage example

 The following is an example of a request to view the information of a role indicated by

the URI urn:ucode:_00001C00000000000001000000100800, and the response.

Request

- 75 -

4.4.4. Viewing roles: Specifying properties

Functional summary:

 Specifying properties and viewing roles.

Method:

 GET

URL path:

 /api/v2/roles/<targets>/<properties>

  <targets>: Role identifiers. (xsd:anyURI[] format)

  <properties>: Property identifiers. (xsd:anyURI[] format)

Response

- 76 -

Restrictions:

 This can only be performed by a user who is authorized to view the roles specified by

<targets>.

Parameters:

 None.

Status codes:

 As shown in Table 4.4.7.

Table 4.4.7. Status codes when viewing roles and specifying properties

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> are not specified.

404 Not Found No corresponding role can be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the role list, in the format specified by the Accept header.

API usage example

 The following is an example of a request to view the viewing authority under the role

indicated by the URI urn:ucode:_00001C00000000000001000000100800, and the

response.

Request

- 77 -

4.4.5. Updating roles

Functional summary:

 Updating roles.

Method:

 PUT

URL path:

 /api/v2/roles/<targets>

  <targets>: Role identifiers. (xsd:anyURI[] format)

Restrictions:

 This can only be performed by a user who is authorized to update the roles

corresponding to <targets>.

Parameters:

 The role description in RDF format ("update role data") is contained in the message body.

 The subject of the update role data is consistent with <targets>.

 After the command is completed, the role descriptions specified by <targets> will be

completely consistent with the update role data. Data not stated in the update role data

will be deleted from the roles specified by <targets>.

Response

- 78 -

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.4.8.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to update the role indicated by the URI

urn:ucode:_00001C00000000000001000000100800 to allow only viewing, and the

response.

Table 4.4.8. Status codes when updating roles

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

403 Forbidden Access is not authorized.

404 Not Found No corresponding role identifier has been registered in the ODDP
system.

500 Internal Error An error occurred within the ODDP system.

- 79 -

4.4.6. Updating roles: Specifying properties

Functional summary:

 Specifying properties and updating roles.

Method:

 PUT

URL path:

 /api/v2/roles/<targets>/<properties>

Request

Response

- 80 -

  <targets>: Role identifiers. (xsd:anyURI format)

  <properties>: Property identifiers. (xsd:anyURI format)

Restrictions:

 This can only be performed by a user who is authorized to update the roles

corresponding to <target>.

Parameters:

 The RDF data representing the roles ("update role data") is contained in the message

body.

 The subject of the update role data is consistent with <targets>.

 After the command is completed, the values of properties specified by <properties> in

the roles specified by <targets> will be completely consistent with the update role

data. Property values not specified by <properties> are not changed, even if they are

included in the update role data.

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.4.9.

Responses:

 If successful, the response body is empty.

Table 4.4.9. Status codes when updating roles and specifying properties

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

The subject of the update role data is not consistent with <targets>.

403 Forbidden Access is not authorized.

404 Not Found No corresponding role identifier has been registered in the ODDP
system.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to prohibit viewing authorization of the role

indicated by the URI urn:ucode:_00001C00000000000001000000100800, and the

response.

- 81 -

4.4.7. Deleting roles

Functional summary:

 Deleting roles.

Method:

 DELETE

URL path:

 /api/v2/roles/<targets>/<properties>

  <targets>: Role identifiers. (xsd:anyURI format)

  <properties>: Property identifiers. (xsd:anyURI format)

Restrictions:

 This can only be performed by a user who is authorized to update the roles

corresponding to <target>.

Request

Response

- 82 -

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.4.10.

Table 4.4.10. Status codes when deleting roles

Status code Meaning

204 No Content Completed successfully.

403 Forbidden Access is not authorized.

404 Not Found No corresponding role identifier has been registered in the ODDP system.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to delete a role indicated by the URI

urn:ucode:_00001C00000000000001000000100800, and the response.

4.4.8. Deleting attributes of roles

Functional summary:

 Specifying properties and deleting roles.

Method:

 DELETE

URL path:

 /api/v2/roles/<targets>

  <targets>: Role identifiers. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to delete the roles corresponding to <targets>.

Response

Request

- 83 -

Parameters:

 None.

Status codes:

 As shown in Table 4.4.11.

Table 4.4.11. Status codes when deleting attributes of roles

Status code Meaning

204 No Content Completed successfully.

403 Forbidden Access is not authorized.

404 Not Found No corresponding role identifier has been registered in the ODDP
system.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to delete a role indicated by the URI

urn:ucode:_00001C00000000000001000000100800, and the response.

4.4.9. Searching data sets

Functional summary:

 Searching for metadata of data sets.

Method:

 GET

URL path:

 /api/v2/datasets

Restrictions:

 This only be performed by an application that is authorized to perform data set searches,

and it can only obtain the data sets for which it has viewing rights.

Response

Request

- 84 -

Parameters:

 The parameters are as shown in Table 4.4.12. They are given in the form of <paramN> =

<valueN>. If multiple parameters are specified, this is an AND search.

Table 4.4.12. Data set search parameters

Parameter name Default value Explanation

paramN (not specified) Name of property for searching

valueN (not specified) Value of property for searching

 At least one pair of <paramN>, <valueN> should be specified. <paramN> is any of the

following.

 A property URI indicating a data set attribute.

 Target: The URI of the searched data set, its parameter value having the format of

xsd:anyURI[]. Any commas included in the URI should be URL encoded. If there are

multiple targets, they should be separated by commas.

 Offset, limit: The parameter value is xsd:integer. The meaning is a request for the

limit quantity of search results, starting from the search result whose position

corresponds to the offset number.

 Property names in the data set description.

Required HTTP headers:

 The requested RDF format should be specified in the Accept header, based on Table

3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.4.13.

Table 4.4.13. Status codes when searching data sets

Status code Meaning

200 OK Completed successfully.

400 Bad Request There is no <param1>, <value1> pair.

Incorrect <paramN>.

404 Not Found No metadata meeting the search conditions has been registered in the
ODDP system.

413 Request Entity
Too Large

The limit value is too high.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the role list, in the format specified by the Accept header.

 If the response is divided (paging), a Link header should be added to the HTTP header,

based on section 3.4.3 (Rules on response paging).

API usage example

 The following is an example of a request to obtain a list of viewable data sets, and the

response.

- 85 -

4.5. Notification management commands

 A notification is a callback mechanism to the user program in the event that the public

data in question is updated and it meets the specified conditions. The callback

destination is specified as a URL. If the callback URL includes "%U", the ODDP

Request

Response

- 86 -

system will replace this portion with the URI representation of the corresponding

identifier.

 The ODDP system manages notifications by assigning respective ucodes. Table 4.5.1

shows combinations of properties associated with ucode notifications and values

(objects).

Table 4.5.1. Properties associated with notifications and their values (objects)

Property Object type Value (object)

rdf:type rdfs:Class uc:Notification

dc:title xsd:String Name of notification

rdf:subject rdfs:Class URI(s) of subject(s) to be evaluated in the notification

rdf:predicate rdf:Predicate URI of predicate to be evaluated in the notification

uc:notificationCondition xsd:String Conditions of evaluation (See Table 4.5.2)

rdf:value rdfs:Literal Threshold (value of condition for evaluation)

uc:notificationURL xsd:String URL to be notified if conditions are met (literal value)

uc:isValid xsd:boolean True if subject is valid (sending a notification if the conditions are
met); otherwise false

Table 4.5.2. List of notification conditions

Name of condition Meaning

any No conditions (callback always performed)

eq Equal to the specified value

neq Not equal to the specified value

gt Greater than the specified value

gte Greater than or equal to the specified value

lt Lower than the specified value

lte Lower than or equal to the specified value

 Notification management commands are commands for the implementation of this

notification function. These commands are listed in Table 4.5.3. Details concerning

each API are provided below.

Table 4.5.3. List of notification management commands

URL path HTTP method Meaning

/api/v1/notifications GET Searching for a notification

/api/v1/notifications POST Registering a notification

/api/v1/notifications/<targets> GET Viewing notification information

/api/v1/notifications/<target> PUT Updating notification information

/api/v1/notifications/<target> DELETE Deleting notification information

/api/v1/notifications/<target>/run PUT Starting or resuming a notification

/api/v1/notifications/<target>/run DELETE Stopping a notification

- 87 -

4.5.1. Searching for notifications

Functional summary:

 Searching for notifications. Notification searches cannot be performed without viewing

authorization.

Method:

 GET

Restrictions:

 None. Anyone can make a request.

URL path:

 /api/v1/notifications

Parameters:

 The parameters are as shown in Table 4.5.4. They are given in the form of <paramN> =

<valueN>.

Table 4.5.4. Notification search parameters

Parameter name Default value Explanation

paramN (not specified) Name of parameter for searching

valueN (not specified) Value of parameter for searching

 At least one pair of <paramN>, <valueN> should be specified. <paramN> is an attribute

indicated as a property of notifications in Table 4.5.1, or as follows.

 Offset, limit: The parameter value is xsd:integer. The meaning is a request for the

limit quantity of search results, starting from the search result whose position

corresponds to the offset number.

Required HTTP headers:

 The requested RDF format should be specified in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.5.5.

Table 4.5.5. Status codes when searching for notifications

Status code Meaning

200 OK Completed successfully.

400 Bad Request There is no <param1>, <value1> pair.

Incorrect <paramN>.

404 Not Found The searched notification cannot be found.

413 Request Entity
Too Large

The limit value is too high.

500 Internal Error An error occurred within the ODDP system.

- 88 -

Responses:

 The response is RDF data of the notification list, in the format specified by the Accept

header.

 If the response is divided (paging), a Link header should be added to the HTTP header,

based on section 3.4.3 (Rules on response paging).

API usage example

 The following is an example of a request to search for the identifier of a notification

whose name (dc:title) is NotificationA, and the response.

Request

- 89 -

4.5.2. Creating new notifications

Functional summary:

 Creation of new notifications.

Method:

 POST

URL path:

 /api/v1/notifications

Response

- 90 -

Restrictions:

 Access by a user who is authorized to create new notifications.

Parameters:

 The notification definition in RDF format is contained in the message body.

 Automatic ucode issuing can be requested by including a URI having the format of

urn:ucode:_?<val> in the RDF data. (See section 3.6, RDF expressions requesting

automatic ucode issuing.)

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.5.6.

Table 4.5.6. Status codes when creating new notifications

Status code Meaning

201 Created Completed successfully.

400 Bad Request <params> is empty.

The key of <params> is incorrect.

The parameters specify both target and num.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is the structured data shown in Table 4.5.7, represented in JSON or XML

format.

Table 4.5.7. Response format for creation of new notifications

Parameter
name

Format Explanation

ucode hash Hash data where the key is the specified variable name and the value is the URI
representation of the issued ucode.

API usage example

 The following is an example of a request to register a notification having the following

information, and the response.

 Name (dc:title): NotificationA

 Identifiers concerned (df:subject):

urn:ucode:_00001C00000000000001000000100123 and urn:ucode-

_00001C00000000000001000000100124

 Property concerned (rdf:predicate): Temperature (uc:temperature)

 Conditions (uc:notificationCondition, rdf:value): 20º or below

 URL to receive notification (uc:notificationURL):

http://www.example.org/?ucode=%U

 Send notification when conditions are met (uc:isValid = true)

- 91 -

Request

Response

- 92 -

4.5.3. Viewing notification information

Functional summary:

 Viewing notification information.

Method:

 GET

URL path:

 /api/v1/notifications/<targets>

  <targets>: Notification identifiers. (xsd:anyURI[] format)

Restrictions:

 Access by a user who is authorized to view information on the notifications specified by

<targets>.

Parameters:

 None.

Required HTTP headers:

 The requested RDF format should be stated in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.5.8.

Table 4.5.8. Status codes when viewing notification information

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> are not specified.

404 Not Found No corresponding notification can be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is the structured data shown in Table 4.5.9, represented in JSON or XML

format.

Table 4.5.9. Response format for viewing notification information

Parameter
name

Format Explanation

notifications RDF List of specified data. If the specified response format is XML, each item of data is
expressed in RDF/XML. If the specified response format is JSON, each item of data is
expressed in RDF/JSON.

API usage example

 The following is an example of a request to view notification information indicated by the

URI urn:ucode:_00001C00000000000001000000100126, and the response.

- 93 -

Request

Response

- 94 -

4.5.4. Updating notification information

Functional summary:

 Updating notification information.

Method:

 PUT

URL path:

 /api/v1/notifications/<target>

  <target>: Notification identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update information on the notification specified by

<target>.

Parameters:

 The notification update information in RDF format is contained in the message body.

 The subject of the update information is consistent with <targets>.

 The values of predicates contained in the update information are completely

consistent with the specified update information, including quantities.

 The values of predicates that are not included in the update information are not

changed.

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.5.10.

Responses:

 If successful, the response body is empty.

Table 4.5.10. Status codes when updating notification information

Status code Meaning

204 No Content Completed successfully.

400 Bad Request There is no <param1>, <value1> pair.

Incorrect <paramN>.

403 Forbidden Access is not authorized.

404 Not Found The searched notification cannot be found.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to update the name (dc:title) of the notification

indicated by the URI urn:ucode:_00001C00000000000001000000100126 to NotificationA

and stop sending notifications (uc:isValid = false), and the response.

- 95 -

4.5.5. Deleting notifications

Functional summary:

 Deleting notifications.

Method:

 DELETE

URL path:

 /api/v1/notifications/<target>

  <target>: Notification identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to delete the notification specified by <target>.

Parameters:

 None.

Required HTTP headers:

 None.

Request

Response

- 96 -

Status codes:

 As shown in Table 4.5.11.

Table 4.5.11. Status codes when deleting notifications

Status code Meaning

204 No Content Completed successfully.

400 Bad Request <target> is unspecified or incorrect.

403 Forbidden Access is not authorized.

404 Not Found The searched notification cannot be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to delete notification information indicated by

the URI urn:ucode:_00001C00000000000001000000100126, and the response.

4.5.6. Starting or resuming notifications

Functional summary:

 Starting or resuming notifications.

Method:

 PUT

URL path:

 /api/v1/notifications/<target>/run

  <target>: Identifier of the notification to be started or resumed. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update information on the notification specified by

<target>.

Request

Response

- 97 -

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.5.12.

Table 4.5.12. Status codes when starting or resuming notifications

Status code Meaning

204 No Content Completed successfully.

400 Bad Request There is no <param1>, <value1> pair.

Incorrect <paramN>.

403 Forbidden Access is not authorized.

404 Not Found The searched notification cannot be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to begin sending the notification indicated by the

URI urn:ucode:_00001C00000000000001000000100126, and the response.

4.5.7. Stopping notifications

Functional summary:

 Stopping notifications.

Method:

 DELETE

Request

Response

- 98 -

URL path:

 /api/v1/notifications/<target>/run

  <target>: Identifier of the notification to be stopped. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update information on the notification specified by

<target>.

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.5.13.

Table 4.5.13. Status codes when stopping notifications

Status code Meaning

204 No Content Completed successfully.

400 Bad Request <target> is unspecified or incorrect.

403 Forbidden Access is not authorized.

404 Not Found The searched notification cannot be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to stop sending the notification indicated by the

URI urn:ucode:_00001C00000000000001000000100126, and the response.

Request

Response

- 99 -

4.6. Vocabulary management commands

 Vocabulary management commands are commands to provide vocabulary management

functions. Vocabulary is input and output in accordance with the RDF Schema format.

 These commands are listed in Table 4.6.1. Details concerning each API are provided

below.

Table 4.6.1. List of vocabulary management commands

URL path HTTP method Meaning

/api/v1/vocabularies GET Searching for terms

/api/v1/vocabularies POST Registering terms

/api/v1/vocabularies/<targets> GET Viewing terms

/api/v1/vocabularies/<targets>/<property> GET Viewing terms

/api/v1/vocabularies/<target> PUT Updating terms

/api/v1/vocabularies/<target>/<property> PUT Updating terms

/api/v1/vocabularies/<target> DELETE Deleting terms

/api/v1/vocabularies/<target>/synonyms GET Viewing synonyms

/api/v1/vocabularies/<target>/synonyms PUT Updating synonyms

/api/v1/vocabularies/<target>/parents GET Viewing parent terms

/api/v1/vocabularies/<target>/parents PUT Updating parent terms

/api/v1/vocabularies/<target>/children GET Viewing child terms

4.6.1. Searching for terms

Functional summary:

 Searching for terms.

Method:

 GET

Restrictions:

 None. Anyone can make a request.

URL path:

 /api/v1/vocabularies

Parameters:

 The parameters are as shown in Table 4.6.2.

 They are given in the form of <paramN> = <valueN>.

Table 4.6.2. Term search parameters

Parameter name Default value Explanation

paramN (not specified) Name of parameter for searching

valueN (not specified) Value of parameter for searching

- 100 -

 At least one pair of <paramN>, <valueN> should be specified. <paramN> is any of the

following.

 Property URI used in RDF Schema

 Target: An identifier of the searched term, having the format of xsd:anyURI[]. Any

commas included in the URI value should be URL encoded. If there are multiple targets,

they should be separated by commas.

 Offset, limit: The parameter value is xsd:integer. The meaning is a request for the limit

quantity of search results, starting from the search result whose position corresponds to

the offset number.

Required HTTP headers:

 The requested RDF format should be specified in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.6.3.

Table 4.6.3. Status codes when searching for terms

Status code Meaning

200 OK Completed successfully.

400 Bad Request There is no <param1>, <value1> pair.

Incorrect <paramN>.

404 Not Found The searched term cannot be found.

413 Request Entity
Too Large

The limit value is too high.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the term list, in the format specified by the Accept header.

 If the response is divided (paging), a Link header should be added to the HTTP header,

based on section 3.4.3 (Rules on response paging).

API usage example

 The following is an example of a request to search for the identifier of a term whose name

(rdfs:label) is Title, and the response.

Request

- 101 -

Response

- 102 -

4.6.2. Creating new terms

Functional summary:

 Creation of new terms.

Method:

 POST

URL path:

 /api/v1/vocabularies

Restrictions:

 Access by a user who is authorized to create new terms.

Parameters:

 The term definition information in RDF format is contained in the message body.

 Automatic ucode issuing can be requested by including a URI having the format of

urn:ucode:_?<val>. (See section 3.6, RDF expressions requesting automatic ucode issuing.)

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.6.4.

Table 4.6.4. Status codes when creating new terms

Status code Meaning

201 Created Completed successfully.

400 Bad Request The parameters specify neither rdf nor params.

The parameters specify either rdf or params, target, num, but not both.

The key of <params> is incorrect.

The parameters specify both target and num.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is the structured data shown in Table 4.6.5, represented in JSON or XML

format.

Table 4.6.5. Response format for creation of new terms

Parameter
name

Format Explanation

ucode hash Hash data where the key is the specified variable name, and the value is the issued
ucode.

API usage example

 The following is an example of a request to register the following new term, and the

response.

- 103 -

 Synonymous term (owl:sameAs): dc:title

 Name (rdfs:label): Title

 Definition information (rdfs:IsDefinedBy): http://purl.org/dc/terms/

 Registration date (dcterms:Issued): 2008/01/14

 Date of last update (dcterms:modified): 2010/10/11

 Type (rdf:type): Property (rdf:Property)

 Version (dcterms:hasVersion): http://dublincore.org/usage/terms/history/#titleT-002

 Range (rdfs:range): String of characters (rdfs:Literal)

 Parent term (rdfs:subPropertyOf): dc:title

- 104 -

Request

- 105 -

4.6.3. Viewing terms

Functional summary:

 Viewing terms.

Method:

 GET

URL path:

 /api/v1/vocabularies/<targets>

  <targets>: Term identifiers. (xsd:anyURI[] format)

Restrictions:

 None. Anyone can make a request.

Parameters:

 None.

Required HTTP headers:

 The requested RDF format should be stated in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.6.6.

Table 4.6.6. Status codes when viewing terms

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> are not specified.

404 Not Found No corresponding term can be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the term definition list, in the format specified by the Accept

header.

Response

- 106 -

API usage example

 The following is an example of a request to view information concerning the term

indicated by the URI urn:ucode:_0FFFDE00000000000000000000038035, and the

response.

Request

- 107 -

Response

- 108 -

4.6.4. Viewing term information: Specifying properties

Functional summary:

 Specifying properties and viewing term information.

Method:

 GET

URL path:

 /api/v1/vocabularies/<targets>/<properties>

  <targets>: Term identifiers. (xsd:anyURI[] format)

  <properties>: Property identifiers. (xsd:anyURI[] format)

Restrictions:

 None. Anyone can make a request.

Parameters:

 None.

Required HTTP headers:

 The requested of RDF format should be stated in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.6.7.

Table 4.6.7. Status codes when viewing term information and specifying properties

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> or <properties> are not specified.

404 Not Found No corresponding term can be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the term definition list, in the format specified by the Accept

header.

API usage example

 The following is an example of a request to obtain the name (rdfs:label) of the terms

indicated by the URIs urn:ucode:_0FFFDE00000000000000000000038035 and

urn:ucode:_0FFFDE00000000000000000000038036, and the response.

- 109 -

4.6.5. Updating term information

Functional summary:

 Updating term information.

Method:

 PUT

URL path:

 /api/v1/vocabularies/<target>

  <target>: Term identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update information on the term indicated by

<target>.

Request

Response

- 110 -

Parameters:

 Term definition information in RDF format is contained in the message body.

 The subject of the update information is consistent with <target>.

 After the command is completed, the values of predicates contained in the update

information are completely consistent with the specified update information,

including quantities.

 The values of predicates that are not included in the update information are not

changed.

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.6.8.

Responses:

 If successful, the response body is empty.

Table 4.6.8. Status codes when updating term information

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameters.

403 Forbidden Access is not authorized.

404 Not Found No corresponding term can be found.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to obtain the version (dct:hasVersion) of a term

indicated by the URI urn:ucode:_0FFFDE00000000000000000000038035 to

http://dublincore.org/usage/terms/history/#titleT-002, and the response.

- 111 -

4.6.6. Updating term information: Specifying properties

Functional summary:

 Specifying properties and updating term information.

Method:

 PUT

URL path:

 /api/v1/vocabularies/<target>/<property>

  <target>: Term identifier. (xsd:anyURI format)

  <property>: Property identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update information on the term indicated by

<target>.

Parameters:

 The RDF data representing the term definition update information is contained in the

message body.

 The subject of the update information is consistent with <targets>.

 After the command is completed, the property values specified by <properties> in the

term information specified by <targets> will be completely consistent with the update

Request

Response

- 112 -

information. Property values not specified by <properties> are not changed, even if

they are included in the update information.

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.6.9.

Responses:

 If successful, the response body is empty.

Table 4.6.9. Status codes when updating term information and specifying properties

Status code Meaning

204 No Content Completed successfully.

400 Bad Request <target> or <property> is incorrect.

403 Forbidden Access is not authorized.

404 Not Found The searched term cannot be found.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to update the name (rdfs:label) of the term

indicated by the URI urn:ucode:_0FFFDE00000000000000000000038035 to Title, and

the response.

Request

Response

- 113 -

4.6.7. Deleting terms

Functional summary:

 Deleting terms.

Method:

 DELETE

URL path:

 /api/v1/vocabularies/<target>

  <target>: Term identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to delete the term indicated by <target>.

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.6.10.

Table 4.6.10. Status codes when deleting terms

Status code Meaning

204 No Content Completed successfully.

400 Bad Request <target> is unspecified or incorrect.

403 Forbidden Access is not authorized.

404 Not Found The searched term cannot be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to delete the term indicated by the URI

urn:ucode:_0FFFDE00000000000000000000038035, and the response.

Request

- 114 -

4.6.8. Searching for synonyms

Functional summary:

 Searching for synonyms of the specified term (terms linked by owl:sameAs).

Method:

 GET

URL path:

 /api/v1/vocabularies/<target>/synonyms

  <target>: Term identifier. (xsd:anyURI format)

Restrictions:

 None. Anyone can make a request.

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.6.11.

Table 4.6.11. Status codes when searching for synonyms

Status code Meaning

200 OK Completed successfully.

400 Bad Request <target> is not specified.

404 Not Found No corresponding term cannot be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is the structured data shown in Table 4.6.12, represented in JSON or XML

format.

Table 4.6.12. Response format for synonym searches

Parameter name Format Explanation

vocabularies xsd:anyURI[] List of synonyms of the specified term.

Response

- 115 -

API usage example

 The following is an example of a request to search for synonyms of the term indicated by

the URI urn:ucode:_0FFFDE00000000000000000000038035, and the response.

4.6.9. Updating synonym information

Functional summary:

 Updating the synonym information of a term.

Method:

 PUT

URL path:

 /api/v1/vocabularies/<target>/synonyms

  <target>: Term identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update information on the term indicated by

<target>.

Parameters:

 A string of characters in JSON or XML format, having the parameters shown in Table

4.6.13, is contained in the message body.

Required HTTP headers:

 None.

Table 4.6.13. Parameters for updating synonym information

Parameter name Format Explanation

synonyms xsd:anyURI[] List of synonym ucodes of the specified term.

Request

Response

- 116 -

 After the command is completed, the synonyms of the updated term will be only those

values specified in the message body.

Status codes:

 As shown in Table 4.6.14.

Responses:

 If successful, the response body is empty.

Table 4.6.14. Status codes when updating synonym information

Status code Meaning

200 No Content Completed successfully.

400 Bad Request There are no <synonyms>.

<synonyms> are incorrect.

403 Forbidden Access is not authorized.

404 Not Found The searched term cannot be found.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to search for synonyms of a term indicated by the

URI urn:ucode:_0FFFDE00000000000000000000038035, and the response.

4.6.10. Searching for parent terms

Functional summary:

 Searching for parent terms (resources ahead of rdfs:subPropertyOf, rdfs:subClassOf) of

the specified term.

Method:

 GET

Request

Response

- 117 -

URL path:

 /api/v1/vocabularies/<target>/parents

  <target>: Term identifier. (xsd:anyURI format)

Restrictions:

 None. Anyone can make a request.

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.6.15.

Table 4.6.15. Status codes when searching for parent terms

Status code Meaning

200 OK Completed successfully.

400 Bad Request <target> is not specified.

404 Not Found No corresponding term cannot be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is the structured data shown in Table 4.6.16, represented in JSON or XML

format.

Table 4.6.16. Response format for parent term searches

Parameter name Format Explanation

vocabularies xsd:anyURI[] List of parent terms of the specified term.

API usage example

 The following is an example of a request to obtain parent terms of the term indicated by

the URI urn:ucode:_0FFFDE00000000000000000000038035, and the response.

Request

- 118 -

4.6.11. Updating parent term information

Functional summary:

 Updating parent terms (resources ahead of rdfs:subPropertyOf, rdfs:subClassOf) of the

specified term.

Method:

 PUT

URL path:

 /api/v1/vocabularies/<target>/parents

  <target>: Term identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update information on the term indicated by

<target>.

Parameters:

 The identifier of the parent term to be updated is contained in the message body in JSON

or XML format.

 After the command is completed, the parent terms of the updated term will be only those

values specified in the message body.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.6.17.

Response

- 119 -

Table 4.6.17. Status codes when updating parent term information

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameters.

403 Forbidden Access is not authorized.

404 Not Found The searched term cannot be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to update the parent term of a term indicated by

the URI urn:ucode:_0FFFDE00000000000000000000038035 to

urn:ucode:_0FFFDE0000000000000000000002800E, and the response.

4.6.12. Searching for child terms

Functional summary:

 Searching for child terms (resources before rdfs:subPropertyOf, rdfs:subClassOf) of the

specified term.

Method:

 GET

URL path:

 /api/v1/vocabularies/<target>/children

  <target>: Term identifier. (xsd:anyURI format)

Restrictions:

 None. Anyone can make a request.

Request

Response

- 120 -

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.6.18.

Table 4.6.18. Status codes when searching for child terms

Status code Meaning

200 OK Completed successfully.

400 Bad Request <target> is not specified.

404 Not Found No corresponding term cannot be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is the structured data shown in Table 4.6.19, represented in JSON or XML

format.

Table 4.6.19. Response format for child term searches

Parameter name Format Explanation

vocabularies xsd:anyURI[] List of child terms of the specified term.

API usage example

 The following is an example of a request to obtain child terms of the term indicated by the

URI urn:ucode:_0FFFDE0000000000000000000002800E, and the response.

Request

Response

- 121 -

4.7. Triple management commands

 Triple management commands are commands that enable user programs to perform

public data operations with simplified standards for standardized data so that small

devices such as sensors and smart meters can efficiently handle the registration and

utilization of triples consisting of a subject, predicate, and object under the RDF model.

 These commands are listed in Table 4.7.1. Details concerning each API are provided

below.

Table 4.7.1. List of triple management commands

URL path HTTP method Meaning

/api/v1/datapoints GET Searching for public data

/api/v1/datapoints POST Registering public data

/api/v1/datapoints/<targets> GET Viewing public data

/api/v1/datapoints/<targets>/<properties> GET Viewing public data

/api/v1/datapoints/<target> PUT Updating public data

/api/v1/datapoints/<target>/<property> PUT Updating public data

/api/v1/datapoints/<target> DELETE Deleting public data

/api/v1/datapoints/<target>/<property> DELETE Deleting attribute values of public data

4.7.1. Searching for public data

Functional summary:

 Searching for public data.

Method:

 GET

Restrictions:

 None. Anyone can make a request.

URL path:

 /api/v1/datapoints

Parameters:

 The parameters are as shown in Table 4.7.2.

 They are given in the form of <paramN> = <valueN>.

Table 4.7.2. Public data search parameters

Parameter name Default value Explanation

paramN (not specified) Name of parameter for searching

valueN (not specified) Value of parameter for searching

- 122 -

 At least one pair of <paramN>, <valueN> should be specified. <paramN> is any of the

following.

 A property URI indicating a public data attribute.

 Target: An identifier of the searched public data, its parameter value having the

format of xsd:anyURI[]. Any commas included in the URI should be URL encoded.

If there are multiple targets, they should be separated by commas.

 Stream: A connection based on Stream API is continued for the number of seconds

specified in the parameter values. (See section 3.7, Streams API.)

 Offset, limit: The parameter value is xsd:integer. The meaning is a request for the

limit quantity of search results, starting from the search result whose position

corresponds to the offset number.

Required HTTP headers:

 The requested RDF format should be specified in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.7.3.

Table 4.7.3. Status codes when searching for public data

Status code Meaning

200 OK Completed successfully.

400 Bad Request There is no <param1>, <value1> pair.

Incorrect <paramN>.

404 Not Found The searched public data cannot be found.

413 Request Entity
Too Large

The limit value is too high.

500 Internal Error An error occurred within the ODDP system.

Responses:

 The response is RDF data of the public data list, in the format specified by the Accept

header.

API usage example

 The following is an example of a request to search for information concerning the public

data whose name (dc:title) is ABC, and the response.

Request

- 123 -

4.7.2. Creating new public data

Functional summary:

 Creation of new public data.

Method:

 POST

URL path:

 /api/v1/datapoints

Restrictions:

 Access by a user who is authorized to create new public data.

Parameters:

 The public data in RDF format is contained in the message body.

 Automatic ucode issuing can be requested by including a URI having the format of

urn:ucode:_?<val> in the RDF data. (See section 3.6, RDF expressions requesting

automatic ucode issuing.)

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.7.4.

Responses:

 The response is the structured data shown in Table 4.7.5, represented in JSON or XML

format.

Response

- 124 -

API usage example

 The following is an example of a request to create public data whose name (dc:title) is

ABC Meter and obtain its identifier, and the response.

Table 4.7.4. Status codes when creating new public data

Status code Meaning

201 Created Completed successfully.

400 Bad Request The parameters specify neither rdf nor params.

The parameters specify either rdf or params, target, num, but not both.

The key of <params> is incorrect.

The parameters specify both target and num.

409 Conflict The identifier of the specified public data is already registered in the
ODDP system.

500 Internal Error An error occurred within the ODDP system.

Table 4.7.5. Response format for new public data creation

Parameter name Format Explanation

ucode hash Hash data where the key is the specified variable name and the value
is the URI representation of the issued ucode

Request

Response

- 125 -

4.7.3. Viewing public data

Functional summary:

 Viewing public data.

Method:

 GET

URL path:

 /api/v1/datapoints/<targets>

  <targets>: Public data identifiers. (xsd:anyURI[] format)

  <properties>: Property identifiers. (xsd:anyURI[] format)

Restrictions:

 Access by a user who is authorized to view information on the public data specified by

<targets>.

Parameters:

 As shown in Table 4.7.6.

Table 4.7.6. Parameters for viewing public data

Parameter name Format Explanation

stream xsd:integer If this parameter is specified, the connection based on Stream API is
continued for the specified number of seconds. (See section 3.7,
Streams API.)

Status codes:

 As shown in Table 4.7.7.

Required HTTP headers:

 The requested RDF format should be stated in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Responses:

 The response is RDF data of the public data list, in the format specified by the Accept

header.

Table 4.7.7. Status codes when viewing public data

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> are not specified.

404 Not Found No corresponding public data can be found.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to view public data indicated by the URI

urn:ucode:_00001C00000000000001000000100124, and the response.

- 126 -

4.7.4. Viewing public data: Specifying properties

Functional summary:

 Specifying properties and viewing public data.

Method:

 GET

URL path:

 /api/v1/datapoints/<targets>/<properties>

  <targets>: Public data identifiers. (xsd:anyURI[] format)

  <properties>: Property identifiers. (xsd:anyURI[] format)

Restrictions:

 Access by a user who is authorized to view information on the public data specified by

<targets>.

Parameters:

 As shown in Table 4.7.8.

Request

Response

- 127 -

Table 4.7.8. Parameters for viewing public data and specifying properties

Parameter name Format Explanation

stream xsd:integer If this parameter is specified, the connection based on Stream API is
continued for the specified number of seconds. (See section 3.7,
Streams API.)

Required HTTP headers:

 The requested RDF format should be stated in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.7.9.

Responses:

 The response is RDF data of the public data list, in the format specified by the Accept

header.

Table 4.7.9. Status codes when viewing public data and specifying properties

Status code Meaning

200 OK Completed successfully.

400 Bad Request <targets> or <properties> are not specified.

404 Not Found No corresponding public data can be found.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to view the names (dc:title) of public data

indicated by the URIs urn:ucode:_00001C00000000000001000000100124 and

urn:ucode:_00001C00000000000001000000100125, and the response.

Request

- 128 -

4.7.5. Updating public data

Functional summary:

 Updating public data.

Method:

 PUT

URL path:

 /api/v1/datapoints/<target>

  <target>: Public data identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update information on the public data specified by

<target>.

Parameters:

 The update information in RDF format is contained in the message body.

 The subject of the update information data is consistent with <target>.

 The values of predicates contained in the update information are completely

consistent with the specified update information, including quantities.

Response

- 129 -

 The values of predicates that are not included in the update information are not

changed.

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.7.10.

Responses:

 If successful, the response body is empty.

Table 4.7.10. Status codes when updating public data

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect params or rdf.

403 Forbidden Access is not authorized.

404 Not Found The searched public data cannot be found.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to update the name (dc:title) of public data

indicated by the URI urn:ucode:_00001C00000000000001000000100124 to ABC meter,

and the response.

Request

Response

- 130 -

4.7.6. Updating public data: Specifying properties

Functional summary:

 Specifying properties and updating public data.

Method:

 PUT

URL path:

 /api/v1/datapoints/<target>/<property>

  <target>: Public data identifier. (xsd:anyURI format)

  <property>: Property identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update information on the public data specified by

<target>.

Parameters:

 The RDF data representing the update information is contained in the message body.

 The subject of the update data is consistent with <targets>.

 After the command is completed, the property values specified by <properties> in the

public data specified by <targets> will be completely consistent with the update

information. Property values not specified by <properties> are not changed, even if

they are included in the update information.

Required HTTP headers:

 The format of RDF data contained in the message body should be stated in the Content-

Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:

 As shown in Table 4.7.11.

Responses:

 If successful, the response body is empty.

Table 4.7.11. Status codes when updating public data and specifying properties

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameter values.

403 Forbidden Access is not authorized.

404 Not Found The searched public data cannot be found.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to update the name (dc:title) of public data

indicated by the URI urn:ucode:_00001C00000000000001000000100124 to ABC meter,

and the response.

- 131 -

4.7.7. Deleting public data

Functional summary:

 Deleting public data.

Method:

 DELETE

URL path:

 /api/v1/datapoints/<target>

  <target>: Public data identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to delete the public data specified by <target>.

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.7.12.

Request

Response

- 132 -

Table 4.7.12. Status codes when deleting public data

Status code Meaning

204 No Content Completed successfully.

400 Bad Request <target> is unspecified or incorrect.

403 Forbidden Access is not authorized.

404 Not Found The searched public data identifier cannot be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to delete public data indicated by the URI

urn:ucode:_00001C00000000000001000000100124, and the response.

4.7.8. Deleting attributes of public data

Functional summary:

 Deleting specified attributes of public data.

Method:

 DELETE

URL path:

 /api/v1/datapoints/<target>/<property>

  <target>: Public data identifier. (xsd:anyURI format)

  <property>: Property identifier. (xsd:anyURI format)

Restrictions:

 Access by a user who is authorized to update information on the public data indicated by

<target>.

Parameters:

 None.

Request

Response

- 133 -

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.7.13.

Table 4.7.13. Status codes when deleting attributes of public data

Status code Meaning

204 No Content Completed successfully.

400 Bad Request Incorrect parameters.

403 Forbidden Access is not authorized.

404 Not Found The searched public data cannot be found.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to delete the name (dc:title) of public data

indicated by the URI urn:ucode:_00001C00000000000001000000100124, and the

response.

4.8. Identification resolution commands

 Identification resolution commands are commands to provide directory-type searches

so that a user program can obtain the server that contains public data concerning the

referent specified by an identifier of an object, place, or thing from that identifier.

 These commands are listed in Table 4.8.1. Details concerning each API are provided

below.

Request

Response

- 134 -

Table 4.8.1. List of identification resolution commands

URL path HTTP method Meaning

/api/v1/rs/<ucode> GET Performing simplified ucode resolution

/api/v1/resolve/<ucode> GET Obtaining the referent of public data from ucode

/api/v1/resolve POST Creating a pair of ucode and its public data referent (ucode
resolution information)

/api/v1/resolve/<ucode> PUT Creating ucode resolution information

/api/v1/resolve/<ucode> DELETE Deleting ucode resolution information

4.8.1. Simplified ucode resolution

Functional summary:

 Providing a ucode resolution function based on the Simplified ucode Resolution Protocol

[15]; in other words, obtaining the referent of the information that is linked to a ucode.

Method:

 GET

URL path:

 /api/v1/rs/<ucode>

  <ucode>: ucode for resolution

Restrictions:

 None. Anyone can make a request.

Parameters:

 The parameters are as shown in Table 4.8.2.

 They are given in the form of <paramN> = <valueN>.

Table 4.8.2. Simplified ucode resolution parameters

Parameter name Default value Explanation

paramN xsd:string Name of resolution parameter

valueN xsd:string Value of resolution parameter

 The resolution parameters are based on [14] and [15]. The specific parameters used in

these commands are listed in Table 4.8.3.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.8.4.

- 135 -

Responses:

 The response is the structured data shown in Table 4.8.5, represented in JSON or XML

format. If redirect was specified for the X-UIDC-GWMODE parameter, it is redirected to

the URL of the resolution destination. See [14] for the meanings of values.

Table 4.8.3. Ucode resolution search parameters

Parameter name Default value Explanation

X-UIDC-GWMODE resolveall Resolution mode. Its values are as follows.

 resolveall: Identifier resolution (all hierarchies)

 resolve: Identifier resolution (only one hierarchy)

 redirect: Identifier resolution and HTTP redirect

X-UIDC-QUERYMASK all 1 Identifier resolution mask value

X-UIDC-
QUERYATTRIBUTE

UIDC_ATTR_ANONYMOUS Attributes of resolution information to be obtained. Its
values are as follows.

 UIDC_ATTR_ANONYMOUS: Not specified.

 UIDC_ATTR_RS: Resolution server.

 UIDC_ATTR_IS: Information server.

 UIDC_ATTR_USER: User-defined information.

Table 4.8.4. Status codes in simplified ucode resolution

Status code Meaning

200 OK Completed successfully.

400 Bad Request <ucode> is not specified.

403 Forbidden Access is not authorized.

404 Not Found No corresponding ucode is registered in the ODDP system.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to obtain the simplified ucode resolution

information for the ucode urn:ucode:_00001C00000000000001000000100123, and the

response.

Request

- 136 -

Table 4.8.5. Response parameters in simplified ucode resolution

Parameter name Format Explanation

results hash[] List of resolution information. Each item of
information consists of the following hash data.

 X-UIDC-DATA xsd:string Data retrieved from ucode resolution

X-UIDC-DATAVERSION xsd:integer Data version retrieved from ucode resolution

X-UIDC-DATATYPE xsd:integer Data type retrieved from ucode resolution

X-UIDC-RETURNMASK xsd:string Bitmask retrieved from ucode resolution

X-UIDC-TTL xsd:integer Expiration date of data retrieved from ucode
resolution

X-UIDC-RESOLVEMODE xsd:integer Resolution mode

4.8.2. ucode resolution: Obtaining referent of public data from ucode

Functional summary:

 Obtaining the referent of public data linked to a ucode.

Method:

 GET

URL path:

 /api/v1/resolve/<ucode>

  <ucode>: ucode for resolution

Restrictions:

 None. Anyone can make a request.

Parameters:

 The parameters are as shown in Table 4.8.6.

 They are given in the form of <paramN> = <valueN>.

Response

- 137 -

Table 4.8.6. Parameters for ucode resolution (obtaining referent of public data from ucode)

Parameter name Format Explanation

paramN std:string Name of resolution parameter

valueN std:string Value of resolution parameter

 The resolution parameters are parameters from a property URI or based on [14] and [15].

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.8.7.

Responses:

 The response is the structured data shown in Table 4.8.5, represented in JSON or XML

format. See [14] for the meanings of values.

Table 4.8.7. Status codes in ucode resolution (obtaining referent of public data from ucode)

Status code Meaning

200 OK Completed successfully.

400 Bad Request <ucode> is not specified.

403 Forbidden Access is not authorized.

404 Not Found No corresponding ucode is registered in the ODDP system.

500 Internal Error An error occurred within the ODDP system.

Table 4.8.8. Response parameters in ucode resolution (obtaining referent of public data from

ucode)

Parameter name Format Explanation

results hash[] List of resolution information. Each item of
information consists of the following hash data.

 X-UIDC-ATTROBUTE xsd:string Data attribute retrieved from ucode resolution

X-UIDC-DATA xsd:string Data retrieved from ucode resolution

X-UIDC-RETURNMASK xsd:string Bitmask retrieved from ucode resolution

X-UIDC-RESOLVEMODE xsd:integer Resolution mode

API usage example

 The following is an example of a request to obtain the referent of public information that

an issuer (uc:issuer) indicated by the URI

urn:ucode:_00001C00000000000001000000100124 has linked to the ucode

urn:ucode:_00001C00000000000001000000100123, and the response.

- 138 -

4.8.3. Creating new ucode resolution information

Functional summary:

 Linking the referent of public data to a ucode.

Method:

 POST

URL path:

 /api/v1/resolve

Restrictions:

 Access by a user who is authorized to create new ucode resolution information.

Parameters:

 A string of characters in JSON or XML format, having the parameters shown in Table

4.8.9, is contained in the message body.

Request

Response

- 139 -

Table 4.8.9. Parameters for creating new ucode resolution information

Parameter
name

Format Explanation

target xsd:anyURI The corresponding ucode

params hash Hash data where the key is the registered parameter name, and the value is the
registered value.

 <target> and <params> must not be empty. The keys of <params> are parameters from a

property URI or based on [14] and [15].

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.8.10.

Responses:

 The response is the structured data shown in Table 4.8.11, represented in JSON or XML

format.

API usage example

 The following is an example of a request to register the URL，http://www.example.org/

as the referent of public information linked to the ucode

urn:ucode:_00001C00000000000001000000100100, and the response.

Table 4.8.10. Status codes when creating new ucode resolution information

Status code Meaning

200 OK Completed successfully.

400 Bad Request <target> is unspecified.

403 Forbidden Access is not authorized.

404 Not Found No corresponding ucode is registered in the ODDP system.

500 Internal Error An error occurred within the ODDP system.

Table 4.8.11. Response format for creation of ucode resolution information

Parameter Format Explanation

ucode xsd:anyURI[] ucode identifying the created ucode resolution information.

- 140 -

4.8.4. Updating ucode resolution information

Functional summary:

 Updating the referent of public data linked to a ucode.

Method:

 PUT

URL path:

 /api/v1/resolve/<ucode>

  <ucode>: ucode identifying the ucode resolution information

Restrictions:

 Access by the user who registered the ucode resolution information.

Parameters:

 A string of characters in JSON or XML format, having the parameters shown in Table

4.8.12, is contained in the message body.

Table 4.8.12. Parameters for updating ucode resolution information

Parameter name Format Explanation

target xsd:anyURI The corresponding ucode

params hash Hash data where the key is the registered parameter name, and the
value is the registered value.

 <target> and <params> must not be empty. The keys of <params> are parameters from a

property URI or based on [14] and [15].

Request

Response

- 141 -

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.8.13.

Responses:

 If successful, the response body is empty.

Table 4.8.13. Status codes when updating ucode resolution information

Status code Meaning

200 OK Completed successfully.

400 Bad Request <target> is unspecified.

403 Forbidden Access is not authorized.

404 Not Found No corresponding ucode is registered in the ODDP system.

500 Internal Error An error occurred within the ODDP system.

API usage example

 The following is an example of a request to update the referent URL of public information

linked to the ucode urn:ucode:_00001C00000000000001000000100125 to

http://www.example.org/, and the response.

4.8.5. Deleting ucode resolution information

Functional summary:

 Deleting the linkage of public data and a referent with respect to a ucode.

Request

Response

- 142 -

Method:

 DELETE

URL path:

 /api/v1/resolve/<ucode>

  <ucode>: ucode identifying the ucode resolution information

Restrictions:

 The user who registered the ucode resolution information can make a request.

Parameters:

 None.

Required HTTP headers:

 None.

Status codes:

 As shown in Table 4.8.14.

Table 4.8.14. Status codes when deleting ucode resolution information

Status code Meaning

200 OK Completed successfully.

400 Bad Request <ucode> is unspecified.

403 Forbidden Access is not authorized.

404 Not Found No corresponding ucode is registered in the ODDP system.

500 Internal Error An error occurred within the ODDP system.

Responses:

 If successful, the response body is empty.

API usage example

 The following is an example of a request to delete the referent of public information linked

to the ucode urn:ucode:_00001C00000000000001000000100125, and the response.

Request

Response

- 143 -

Appendix A. Summary of RDF

The Resource Description Framework (RDF) [37] is a set of specifications from the World

Wide Web Consortium (W3C) for the description of information concerning things that can

be identified on the Web (called "resources").

This chapter will explain the following three matters concerning RDF.

 RDF model and RDF graphs

 RDF syntax

 RDF graph searching with SPARQL

A.1. RDF model and RDF graphs

 In the RDF data model, information concerning resources is expressed by the following

three elements. A set of these three elements is called a "triple" or a "statement."

 Subject: Identifies the resource to be described

 Predicate: Identifies a characteristic or aspect of the predicate.

 Object: Value of the characteristic or aspect expressed by the predicate with

respect to the subject. The value is a string of characters or numerals (called a

"literal") or an identifier.

 In general, the RDF model is depicted using ovals for the subject and object identifiers

and a rectangle for the literal, with the predicate written above an arrow pointing from

the subject to the object. If the object is an identifier, the triple where that functions as

subject is connected, forming a directed graph, or digraph. A digraph formed in this

way is called an RDF graph.

 In the RDF model, to make it possible to identify resources on the Web, resources are

expressed as uniform resource identifiers, or URI [3]. However, if a subject or object

has no URI, it can be expressed as a name that can only be identified within the RDF

graph that includes it. This is called a blank node.

 For example, Fig. A.1 shows an RDF graph indicating that the name of a resource

expressed by the URL http://www.example.org/book/book6 is "Example book #6"

where the predicate of the name of a book is expressed as the URI

http://purl.org/dc/elements/1.1/title.

Fig. A.1. Example of RDF graph

A.2. RDF syntax

 There are several formats for expressing a triple under the RDF model as machine-

readable data, including RDF/XML [1], N-Triples [29], and Notation3 [4].

- 144 -

 For example, the RDF graph shown in Fig. A.1 is expressed as follows under

RDF/XML, N-Triples, and Notation3, respectively.

A.3. RDF graph searching with SPARQL

 The Simple Protocol and RDF Query Language (SPARQL) [18] is a query language

specified by W3C for searches and operations on data described in the RDF model

 SPARQL has the function of querying a required or optional pattern that replaces a

portion of an RDF graph with a variable (called a query pattern), along with its logical

AND and logical OR. Upon receiving the query pattern, the server searches the

database to determine the presence or absence of a subgraph composed by replacing the

variables contained in the query pattern with resources or literals. This process is called

pattern matching. The results of SPARQL queries are sets of variables with their values

from pattern matching, RDF graphs, or Boolean values.

 SPARQL 1.0 provides the following four query forms.

 SELECT: Returns all or a subset of the variables contained in a query pattern along

with the corresponding values obtained through pattern matching.

 CONSTRUCT: Returns an RDF graph constructed by substituting the variables

obtained through pattern matching into a set of triple templates.

 ASK: Returns a Boolean value indicating whether or not a query pattern matches.

 DESCRIBE: Returns an RDF graph describing the resources found.

 Here, we will assume that the RDF graph shown in Fig. A.2 has been registered.

- 145 -

Fig. A.2. Example of RDF graph storage

 The following is an example of a SELECT query to search for a resource which is a

book entitled "Example book #6," and the response.

 In addition, the following is an example of a CONSTRUCT query to obtain the names

of books issued on or before March 31, 2013 in RDF graph form, and the response.

Example of SELECT query

Example of SELECT response

Example of CONSTRUCT query

Example of CONSTRUCT response

- 146 -

Appendix B. Summary of ucode

This chapter provides a summary of ucode.

B.1. Definition of ucode

 A ucode is an individual identification number that is used to identify various things,

places, etc. that exist in the real world. Ucodes can also be assigned to content,

information, and abstract concepts other than physical objects existing in the real world.

 Ucode is a fixed-length, 128-bit identifier system. To allow larger codes than 128 bits

to be defined as needed in the future, a mechanism is in place to allow ucodes to be

extended in 128-bit units. When ucodes are assigned to physical things and places, they

are stored in barcodes, two-dimensional matrix codes, or tags such as RFID (called

ucode tags).

 A ucode is merely an identification number. There is no relationship between its

numerals and the attributes or meaning of the identified object. In ubiquitous ID

architecture, an architecture that uses ucodes as identifiers, the basic approach is to

store information concerning the attributes and meanings of identified objects in

databases. The ucode serves as a key for extracting those attributes and meanings from

the databases.

 Because of the nature of ucodes as identification numbers, it is essential to maintain the

uniqueness of issued ucodes. In other words, the same ucode must never be assigned to

more than one object. When an object with an assigned ucode ceases to exist, its ucode

is discarded, and the same ucode will not be reused in the future. A ucode is retired

when its referent no longer exists. This ensures the uniqueness of ucodes over time as

well as in space.

 For the sake of convenience in issuing and managing ucodes, the structure shown in Fig.

B.1 has been defined, providing management fields and allocation units. This structure

is merely for the sake of management, and there is no correlation between the structure

of ucodes and the attributes or meanings of the referents for which they are issued.

- 147 -

Fig. B.1. Structure of ucode

B.2. Features of ucode

 In contrast to other existing systems for assigning identification codes to objects, ucode

has the following characteristics.

1. Instead of expressing product types like product codes, ucode identifies individual

objects. Because product codes such as EAN, UCC, and JAN identify product

types by vendor, the same product code is assigned to multiple instances of the

same product. Meanwhile, different ucode numbers are assigned to each individual

instance of the same product.

2. In addition to objects, ucodes can be assigned to places, content, and concepts.

Ucode is the only code system that can universally identify things, places, content,

and so on.

3. Ucode is not dependent on application fields or industries. It is not a code system

that is used only in a specific industry, such as logistics. Instead, ucodes can be

assigned to all sorts of referents without regard to application or industry, including

electric appliances, food products, places, and musical content. This is because the

only aim of ucode is to uniquely identify objects, places, and so on, and because it

is simply a numbering system with no inherent meaning. Therefore, ucode is

particularly effective when providing services or managing items that extend

across multiple industries or applications, and when managing places as well as

things within the same system.

4. Ucodes are purely serial numbers and do not contain meaning. The basic

architecture stores information on the nature and meaning of things and places on a

server in a network. This approach is especially effective for applications where the

nature and meaning of things and places with assigned unicodes may change from

time to time. Guardrails on roads could be considered as an example. When

guardrails are produced in a factory, they are products known as guardrails until

they are delivered to a construction site. When they are installed along a road, they

Field name

Version number

Upper-level domain identification number

Code specifying the boundary of SLDc and ic

Lower-level domain identification number

Individual identification number

Meaning

- 148 -

become a component of a place. Finally, when guardrails are removed, they have

the nature of waste until they are destroyed. The ucode is a straightforward way to

identify the same item even as it changes according to its life cycle from product to

place to waste.

5. Ucodes work with any type of tag. They can be stored on barcodes, two-

dimensional matrix codes, RFIDs, active tags, and all other types of tags. Therefore,

the optimal type of tag can be selected for ucode storage depending on the

application and the usage environment.

6. Ucode is based on international standards. The ucode system is a technical standard

based on Recommendation H.642.1 of ITU-T [35].

7. Ucode is compatible with RDF. By using ucode URNs, which will be described

below, ucodes can be expressed as RDF resources.

 Because the open data distribution platform system is based on the RDF model, URIs

are used to identify data and its associated objects, organizations, places, etc. Because

of the features of ucode as described above, ucode can be used as an identifier in cases

where there is no identifier system to uniquely identify data and its associated objects,

organizations, places, etc., and in cases where such identifiers cannot be expressed as

URIs.

B.3. Relationship between ucode and RDF

 RFC 6558 [36] describes specifications on Uniform Resource Name (URN, a type of

URI) notation for ucode. Ucodes represented according to this document can be used as

resources under the RDF model.

 For example, the following is the URN notation under RFC 6588 for the ucode value of

00001C00000000000001000000100800.

urn:ucode_00001C00000000000001000000100800

 In addition, the RDF graph shown in Fig. B.2 can express the statement that "Example

Book #6" is the name (dc:title) of a book identified by this ucode value.

Fig. B.2. Example of RDF graph containing ucode

- 149 -

Appendix C. Vocabulary lists

This appendix provides lists of vocabulary as a reference for data representation based on

these specifications.

C.1. Vocabulary for basic RDF structure

 The namespace for vocabulary concerning basic RDF structure is as follows.

http://www.w3.org/1999/02/22-rdf-syntax-ns#

 Below, this namespace is indicated as "rdf:".

 Terms belonging to this vocabulary are as shown in Tables C.1.1 and C.1.2. Except for

"rdf:type" and "rdf:value", this vocabulary is used in descriptions concerning RDF data

structure.

- 150 -

Table C.1.1. List of classes and instances of vocabulary for basic RDF structure

Meaning

RDF triple

Unordered container

Order container

Container of alternative expressions

List node of collections

End of list

XML literal

RDF predicate class

- 151 -

Table C.1.2. List of properties of vocabulary on basic RDF structure

Meaning

Indicates members of a container (enumerable to 231 - 1)

Indicates subject class

First element of a collection

Remaining elements of a collection

Main value

Subject of a triple

Predicate of a triple

Object of a triple

- 152 -

C.2. RDF schema

 The namespace for RDF schema is as follows.

http://www.w3.org/2000/01/rdf-schema#

 Below, this namespace is indicated as "rdfs:".

 Terms belonging to this vocabulary are as shown in Tables C.2.1 and C.2.2. This

vocabulary is used for vocabulary definitions.

- 153 -

Table C.2.1. List of classes and instances of RDF schema

Meaning

Resource (unit of RDF expression)

Indicates RDF class

Class indicating a literal such as a string of characters

Class indicating the data type of a literal

Class indicating RDF container

Class of property indicating container membership

- 154 -

Table C.2.2. List of properties of RDF schema

Meaning

Subject is a subclass of the object

Subject is a subproperty of the object

Object class is domain of subject property

Object class is value range of subject property

Human understandable name corresponding to the subject

Human understandable explanation corresponding to the subject

Additional information concerning the subject

Definition information concerning the subject

Object is a member of the subject

- 155 -

C.3. OWL

 The namespace for OWL is as follows.

http://www.w3.org/2002/07/owl#

 Below, this namespace is indicated as "owl:".

 Terms belonging to this vocabulary are as shown in Tables C.3.1 and C.3.2. Except for

"rdf:type" and "rdf:value", this vocabulary is used in descriptions concerning RDF data

structure. This vocabulary is used for vocabulary definitions.

- 156 -

Table C.3.1. List of classes and instances of OWL

Meaning

Class representing ontology

Class representing OWL class

Class representing property restrictions

Class representing thing value properties

Class representing data value properties

Class representing symmetric value properties

Class representing transition value properties

Class representing function value properties

Class representing inverse function properties

Class representing ontology properties

Class representing annotation properties

Class representing deprecated classes

Class representing deprecated class properties

Class indicating that a series of things differ from each other

Class for defining data types with listed data values

- 157 -

Meaning

Class for all things of the world described in OWL

Class for empty sets

Collection of mutually prime classes

Collection of mutually prime properties

Class representing annotations

Class indicating asymmetric properties

Class indicating explanatory axioms

Class representing non-recursive properties

Class representing things having names

Class asserting negative properties

Class representing recursive properties

- 158 -

Table C.3.2. List of properties of OWL

Meaning

Equivalent class

Separated class

Equivalent property

Property having inverse relationship

Same thing

Different thing

List of members that are distinct things from each other

Lists all subject class instances in object list

Subject class extension is the union of object class extensions

Subject class extension is the intersection of object class extensions

- 159 -

Meaning

Subject class extension is the complement of object class extensions

Target property of restriction class representations

All values of the target property are members of object class extension

At least one target property is a member of object class extension

At least one target property value is equal to object value

Maximum number of occurrences of target property in subject restriction class

Minimum number of occurrences of target property in subject restriction class

Number of occurrences of target property in subject restriction class

Subject ontology imports object ontology

Subject ontology version management information

Old version of subject ontology

- 160 -

Meaning

Subject ontology is backwards compatible with object ontology

Subject ontology is not compatible with object ontology

Annotation property

Annotation subject

Annotation object

Negative property

Empty data property

Empty data property

Subject data type extension is complement of object data type extension

Deprecated

Subject does not belong to any class of object

- 161 -

Meaning

Key of object list

Subject is self restriction with regard to object

Maximum number of instances with target property condition in subject restriction class

List of disjoint classes

Minimum number of instances with target property condition in subject restriction class

Class for restriction representations

Data range for restriction representations

Data type for restriction representations

Property is chain included

Separated property

Exact number of instances of target property in subject restriction class

- 162 -

Meaning

Subject of negative property assertion

Object of negative property assertion

Value of negative property assertion

Universal data property

Universal object property

Subject ontology version IRI

Restriction on data types

- 163 -

C.4. Dublin Core elements

 The Dublin Core elements [22] are a vocabulary under the international standard ISO

15836 for describing information concerning resources on the WWW. The namespace

for this vocabulary is as follows.

http://purl.org/dc/elements/1.1/

 Below, this namespace is indicated as "dc:".

 Terms belonging to this vocabulary are as shown in Table C.4.1.

- 164 -

Table C.4.1. List of properties of Dublin Core elements

Meaning

Person, organization, or service contributing to content of the subject

Extent or scope of the subject (place, temporal period, etc.)

Entity responsible for providing the subject (author)

Date of publication, availability, etc. of the subject

Text explaining the subject

Media type of the subject (MIME format)

Unambiguous reference to the subject (ISBN, URL, etc.)

Language of the subject (language code)

Person, organization, or service making the subject available

Reference to resource related to the subject

- 165 -

Meaning

Information concerning rights applying to the subject

Resource from which the subject is derived

Topic included in the subject (key word or classification code)

Name given to the subject

Category, nature, or genre of the subject

- 166 -

C.5. DCMI vocabulary

 The DCMI vocabulary (DCMI Metadata Terms) [21] are a vocabulary that extends the

Dublin Core elements, specifying and defining the meanings of terms. It includes the

following four elements.

 Properties:

 Extends the Dublin Core elements; specifies and defines the meanings of terms.

 Vocabulary encoding schemes:

 Prescribes property value units and schemes.

 Syntax encoding schemes:

 Indicates property value description formats.

 Classes:

 Categories for grouping elements having shared characteristics, etc.

 Below, the DCMI vocabulary namespace is indicated as "dct:".

http://purl.org/dc/terms/

 Terms belonging to this vocabulary are as shown in Tables C.5.1 and C.5.2. Except for

"rdf:type" and "rdf:value", terms belonging to this vocabulary are used in descriptions

concerning RDF data structure.

- 167 -

Table C.5.1. List of classes and instances of DCMI vocabulary

Meaning

Set of DCMI type elements

Dewey Decimal Classification

Set of media types (MIME) specified by IANA

U.S. Library of Congress Classification

Medical Subject Headings

U.S. National Library of Medicine classification

Getty Thesaurus of Geographic Names

Universal Decimal Classification

U.S. Library of Congress Subject Headings

Regions defined by geographic indicators

Country codes under ISO 3166-1

Language codes under ISO 639-2

Language codes under ISO 639-3

Time intervals

Points defined by geographic coordinates

- 168 -

Meaning

Language codes under RFC 1766

Language codes under RFC 3066 (replaces RFC 1766)

Language codes under RFC 4646 (replaces RFC 3066)

Uniform Resource Identifiers (URI) under RFC 3986

Date and time notation under ISO 8601, indicated in the W3C notes

Resource (person, organization, software, etc.) that acts or has the power to act

Group of agents, including groups seen as classes, such as students, charities, and lecturers

Book, article, or other documentary resource

Digital resource format

Rate at which something recurs

Scope of judicial, law enforcement, or other authority

Legal document giving official permission for use of a resource

System of symbols, sounds, gestures, or rules used in communication

Spatial region or named place

Location, period of time, or jurisdiction

File format or physical medium

Media type or size

- 169 -

Meaning

Method for adding resources to a collection

Process used to engender knowledge, attitudes, and skills

Interval of time

Physical medium

Material thing

Plan or course of action by an authority to influence decisions, actions, and other matters

Statement of any changes in ownership and management of a resource since its creation that are important for its authenticity,
integrity, and interpretation

Intellectual property rights held under a legal document giving permission to use a resource or a statement concerning access rights

Size, or time taken to play or execute

Standard (basis for comparison)

- 170 -

Table C.5.2. List of properties of DCMI vocabulary

Meaning

Summary of the subject

Persons who can access the subject, or security status

Method for adding new items to the subject collection

Frequency of adding new items to the subject collection

Policy on adding new items to the subject collection

Alternative title for the subject

Target users of the subject

Date or time period of subject availability

Bibliographic reference to the subject

Standard to which the subject conforms

- 171 -

Meaning

Person, organization, or service contributing to content of the subject

Scope or applicability of the subject (place, time period, etc.)

Date of subject creation

Entity responsible for providing the subject (author)

Date of subject creation or updating, etc.

Date of subject acceptance

Date of subject copyright

Date of subject submission

Text explaining the subject

Educational level of persons who are target of the subject

Size or duration of the subject

- 172 -

Meaning

Media type of subject

Subject has object as a different record format

Subject has object as a portion of itself

Subject has object as a version of itself

Unambiguous reference to the subject

Method for understanding the subject

Subject is a different record format of the object

Subject is a portion of the object

Subject is referred to by the object

Subject is replaced by the object (old version of object)

Subject is required by the object

- 173 -

Meaning

Date of formal issuance of the subject

Subject is a version of the object

Language of the subject

Legal or official permission for acts on the subject

Entity that mediates access to the subject

Medium that carries the subject

Date when the subject was modified

Statement of changes in owner or manager that are significant for the subject's authenticity or interpretation

Publishing company of the subject

Subject refers to or quotes the object

Reference to a resource related to the subject

- 174 -

Meaning

Subject replaces the object

Subject requires the object

Information on rights applying to the subject

Person or organization having ownership or management rights of the subject

Resource from which the subject is derived

Spatial or geographic target of the subject

Topic included in the subject (key word or classification code)

Table of contents of the subject

Time period of the subject

Name of the subject

Category, nature, or genre of the subject

- 175 -

Meaning

Date or time of validity of the subject

- 176 -

C.6. Dublin Core types

 The Dublin Core types are vocabulary defining the data types of subjects. The

namespace for this vocabulary is as follows.

http://purl.org/dc/dcmitype/

 Below, this namespace is indicated as "dctype:".

 This vocabulary is included in the DCMI vocabulary, but it is listed separately because

it has a different namespace.

 Terms belonging to this vocabulary are as shown in Table C.6.1.

- 177 -

Table C.6.1. List of classes and instances of Dublin Core types

Meaning

Set of resources

Data encoded in a defined structure (lists, tables, databases, etc.)

Time-based occurrence or event

Visual representation other than text

Resource whose method of use is understood, executed, or experienced by the user (such as Web pages and applets)

System that provides useful functions to users

Computer program

Auditory data

Textual information

Inanimate, three-dimensional object

Static image (subclass of dctype:Image)

Moving image (subclass of dctype:Image)

- 178 -

C.7. FoaF

 Friend of a Friend (FoaF) [8] is a project to allow simple and meaningful analysis of

information concerning people using computers by representing information concerning

people in RDF. The FoaF vocabulary is defined under this project.

 The namespace for this vocabulary is as follows.

http://xmlns.com/foaf/0.1/

 Below, this namespace is indicated as "foaf:".

 Terms belonging to this vocabulary are as shown in Tables C.7.1 and C.7.2.

- 179 -

Table C.7.1. List of classes and instances of FoaF

Meaning

Representations concerning a person

Agent (person, group, software, artifact, etc.)

Group (class of agents)

Organization (company, association, etc.)

Person

Document

Image

Online account

Project

Class representing any RDF property with textual information serving as labels

Online chat account

e-commerce account

Online gaming account

- 180 -

Table C.7.2. List of properties of FoaF

Meaning

Mailbox held by the subject

Name of a person (The given name is recommended.)

Surname

Nickname

Title (Mr., Mrs., Ms., Dr., etc.)

Gender (male, female, etc.)

URI representation of telephone number, e.g. tel:+81-3-5437-2270

Date of birth of the subject

Homepage of the subject

Subject is the main topic of the object

- 181 -

Meaning

Subject knows the object

Something made by the subject

Resource made by the subject

Object is a member of the subject

Main topic of the subject (document)

Subject has an online account

Name (identifier) associated with an online account

- 182 -

Meaning

Homepage of service providing an online account

AIM chat ID

Subject is close to the object

Project that the subject is currently working on

Photograph or drawing that depicts the subject

Image that represents the subject

Surname

Entity associated with a concept such as a subject title

Given name of a person

ICQ chat ID

Image depicting the subject

- 183 -

Meaning

Page concerning a matter of interest to the subject

Jabber ID

Surname (The family name is recommended.)

Logo of the subject

SHA1 hash value of the subject's mailbox

MSN chat ID

Myers Briggs (MBTI) personality classification code of the subject

Name of the subject

OpenID of the subject

Web page written about the subject

Project that the subject previously worked on

- 184 -

Meaning

Telephone number of the subject

Plan of the subject

Link to a list of publications of the subject

Homepage of the subject's alma mater

Skype ID

Image thumbnail

Page describing how to send payment or tips to the subject

Honorific title of the subject

Topic of the subject's page

Topic of interest to the subject

Blog of the subject

- 185 -

Meaning

Homepage explaining the content of the subject's work

Homepage of the subject's workplace

Yahoo! chat ID

Age of the subject

Class of individuals where the subject is a member of the object

Sha1 hash value of a document

Status of the subject

- 186 -

C.8. GeoSPARQL vocabulary

 GeoSPARQL [44] defines vocabulary for description of geographic information based

on simple feature access under ISO 19125, extension functions for searching, and query

rewriting rules. The namespaces for the vocabulary defined by GeoSPARQL are as

indicated at tabreftab:vocab-geosparql-namespace.

Table C.8.1. GeoSPARQL namespaces

Namespace Qname Explanation

http://www.opengis.net/ ogc: Basic vocabulary of GeoSPARQL

http://www.opengis.net/ont/geosparql# ogc: Vocabulary for description of geographic
information

http://www.opengis.net/ont/sf# sf: Simple Features Geometry

http://www.opengis.net/ont/gml# gml: GML Geometry

http://www.opengis.net/def/function/geosparql/ geof: GeoSPARQL functions

http://www.opengis.net/def/rule/geosparql/ geor: GeoSPARQL query rewriting rules

 Below, these namespaces are indicated by the Qname notation in the above table.

 Terms belonging to this vocabulary are as shown in Tables C.8.2 and C.8.3.

- 187 -

Table C.8.2. List of classes and instances of GeoSPARQL vocabulary

Meaning

Literal that encodes geometric data

Object having a spatial representation

Spatial feature; same as GFI_Feature under ISO 19156

Geometric data; same as GM_Object under ISO 19156

Data type of geometric data written in Well-Known Text format

Data type of geometric data written in GML format

Geometric data in zero to two dimensions

Point

Curve

Surface

Geometric data consisting of multiple items of geometric data

One-dimensional geometric data representing a series of points and the line segment that connects them

Line segment

LineString that is closed and simple (no intersection with line segments)

Polygon

- 188 -

Meaning

Polyhedral surface

Triangle

Digital data structure representing ground surface as a collection of triangles, or Triangled Irregular Network

Multiple points

Multiple curves

Multiple surfaces

Multiple lines

Multiple polygons

- 189 -

Table C.8.3. List of properties of GeoSPARQL vocabulary

Meaning

Literal data that encodes the subject

Subject and object are the same geometric data

Subject and object do not intersect

Subject and object intersect

Subject and object are touching

Subject is completely contained within object

Subject contains object 12312123

Subject overlaps with object

Subject crosses object

Geometric representation of subject

- 190 -

Meaning

Topological dimension of subject

Number of coordinate system dimensions of the subject

Number of spatial dimensions of the subject

Subject is geographically empty

Subject is a simple figure (not intersecting or contacting itself at any point)

Subject has a text-based description

String of characters describing the subject in Well-Known Text format

String of characters describing the subject in GML format

- 191 -

C.9. Basic Geo vocabulary

 The Basic Geo vocabulary (WGS84 lat/long) [6] is a vocabulary specified by W3C for

representing points with latitude and longitude based on WGS84.

 The namespace for this vocabulary is as follows.

http://www.w3.org/2003/01/geo/wgs84_pos#

 Below, this namespace is indicated as "geo:".

 Terms belonging to this vocabulary are as shown in Tables C.9.1 and C.9.2.

- 192 -

Table C.9.1. List of classes and instances of Basic Geo vocabulary

Meaning

Thing having a location and size (located in space)

Thing having a time interval

Event

Point

- 193 -

Table C.9.2. List of properties of Basic Geo vocabulary

Meaning

Latitude from WGS84

Longitude from WGS84

Time

Altitude

Location

- 194 -

C.10. Data Catalog (DCAT) vocabulary

 The Data Catalog (DCAT) vocabulary [39] is a vocabulary for describing metadata

related to data sets. The namespace for this vocabulary is as follows.

http://www.w3.org/ns/dcat#

 Below, this namespace is indicated as "dcat:".

 Terms belonging to this vocabulary are as shown in Tables C.10.1 and C.10.2.

- 195 -

Table C.10.1. List of classes and instances of Data Catalog Vocabulary (DCAT)

Meaning

A record of a data catalog describing a single dataset

Data catalog (collection of metadata concerning datasets)

Collection of data issued from a single information source

Information on RSS feeds that can access a dataset

Information on Web services that can access a dataset

Dataset usage format

Information for downloading a dataset

- 196 -

Table C.10.2. List of properties of Data Catalog Vocabulary (DCAT)

Meaning

Knowledge Organization System (KOS) used to categorize datasets of a catalog

Datasets contained in a data catalog

Access information for a dataset

Data quality (such as accuracy)

Dataset categories

Link to dictionary for data interpretation

Level of data particle size (temporal or geographic)

Size of the data

Key words and tags indicating the data

Number of bytes of data

- 197 -

Meaning

Link to data catalog record

Link information for accessing data

- 198 -

C.11. RDF Data Cube vocabulary

 The RDF Data Cube vocabulary [24] is a vocabulary for describing multidimensional

data such as statistical data. The namespace for this vocabulary is as follows.

http://purl.org/linked-data/cube#

 Below, this namespace is indicated as "qb:".

 Terms belonging to this vocabulary are as shown in Tables C.11.1 and C.11.2.

- 199 -

Table C.11.1. List of classes and instances of RDF Data Cube vocabulary

Meaning

Collection of observations according to several common dimensional structures, composed of various slices

A single observation having at least one measured value

Representation of an arbitrary group of observations

Represents a subset of a dataset defined by fixing dimensional values and component properties of slices

Abstract superset of everything that can have attributes and dimensions

Abstract superset of all properties that represent dimensions, attributes, or measures

Class of component properties that represent the dimensions of the cube

Class of component properties that represent the attributes of observations in a cube, such as units of measure

Class of component properties that represent measured values of observed phenomena

Superset of all coded component properties

Structural definition of a dataset or slice

Used to define properties of components (such as attributes and dimensions) whose method of use is determined by a Data
Structure Definition (DSD)

Abstract class of things that mention at least one component property

Subset of component properties of datasets determined by slices that do not conflict

- 200 -

Meaning

Represents a generalized concept hierarchy used for coding

- 201 -

Table C.11.2. List of properties of RDF Data Cube vocabulary

Meaning

Indicates the containing dataset.

Indicates observations included in the dataset slice.

Indicates a subset of the dataset.

Indicates a set of observations.

Generic measure dimension whose value indicates which measure is obtained by the observation.

Indicates the structure followed by the dataset of the subject.

Indicates a component specification included in the dataset structure.

Indicates a component property expected in a dataset or a dimension fixed by a slice key.

Order of priority for components of sets having this structure, used in representation guidance.

Indicates whether a component property is required or optional in a DSD.

- 202 -

Meaning

Indicates the level at which a component property should be attached. The level is qb:DataSet, qb:Slice, qb:Observation, or
qb:MeasureProperty.

Alternative to qb:componentProperty which clearly indicates that the component is a dimension.

Alternative to qb:componentProperty which clearly indicates that the component is a measurement.

Alternative to qb:componentProperty which clearly indicates that the component is an attribute.

Alternative to qb:componentProperty which clearly indicates that the component is a measurement dimension.

Indicates a slice key corresponding to the subject slice.

Indicates a slice key used in the slice of the subject dataset.

Gives the concept which is measured or indicated by a component property.

Gives the code list associated with a coded property.

Specifies the root of a hierarchy. A hierarchy has at least one root.

Specifies a property for correlating parent concepts and child concepts in the hierarchy.

- 203 -

C.12. Simple Knowledge Organization System (SKOS)

 The Simple Knowledge Organization System (SKOS) [40] is a vocabulary for

describing many knowledge organization systems, including thesauri, taxonomies,

classification schemes, and subject heading systems. The namespace for this vocabulary

is as follows.

http://www.w3.org/2004/02/skos/core#

 Below, this namespace is indicated as "skos:".

 Terms belonging to this vocabulary are as shown in Tables C.12.1 and C.12.2.

- 204 -

Table C.12.1. List of classes and instances of SKOS (Simple Knowledge Organization System)

Meaning

- 205 -

Table C.12.2. List of properties of SKOS (Simple Knowledge Organization System)

Meaning

- 206 -

Meaning

- 207 -

Meaning

- 208 -

C.13. Vocabulary for basic classes and physical quantities of subject matter

 The namespace of vocabulary for basic classes and physical quantities of subject matter

is as follows.

http://uidcenter.org/vocab/ucr/uc#

 Below, this namespace is indicated as "uc:".

 Terms belonging to this vocabulary are as shown in Tables C.13.1 and C.13.2.

- 209 -

Table C.13.1. List of classes and instances of vocabulary for basic classes and physical quantities of subject matter

Meaning

Entity class

Entity that exists in real space

Entity that does not exist in real space

Content or item of information

Person

Tangible entity existing in real space, other than a person or place

Place in real space

Concept

Class of classes

Relationship

Value based on lexical representation

Class describing notification conditions

- 210 -

Table C.13.2. List of properties of vocabulary for basic classes and physical quantities of subject matter

Meaning

(General) relationship

Alternative name

Length

Mass

Time

Monetary amount

Area

Volume

Electric current

Voltage

- 211 -

Meaning

Luminosity

Temperature

Humidity

Barometric pressure

Weather

Signature assigned to ucode

Width (lateral length)

Height (vertical length)

Depth

Date of subject ucode issuance

Issuer of subject ucode

- 212 -

Meaning

Manager of subject ucode

Date and time when information concerning the subject ucode was first registered

Date and time when information concerning the subject ucode was last updated

Notification conditions

URL for notification

Subject is valid

Physical amount

Weather-related amount

Hourly pollen count (particles/m3-hour)

Daily pollen count (particles/m3-day)

Hourly pollen dispersal level

- 213 -

Meaning

Daily pollen dispersal level

Precipitation (mm)

Wind direction (degrees)

Wind speed (m/s)

Sunlight (minutes)

Sulfur dioxide (ppm)

Nitric monoxide (ppm)

Nitric dioxide (ppm)

Nitrogen oxides (ppm)

Carbon monoxide (ppm)

Photochemical oxidants (ppm)

- 214 -

Meaning

Nonmethane hydrocarbons (ppmC)

Methane (ppmC)

Total hydrocarbons (ppmC)

Airborne particulate matter (mg/m3)

Fine particulate matter (µg/m3)

Airborne dust (mg/m3)

Snow accumulation (cm)

Snowfall (cm)

- 215 -

C.14. Access control vocabulary

 The namespace of vocabulary for describing access control under section 4.4 (Security

management commands) is as follows.

http://uidcenter.org/vocab/ucr/oddp-acl#

 Below, this namespace is indicated as "odacl:".

 Terms belonging to this vocabulary are as shown in Tables C.14.1 and C.14.2.

- 216 -

Table C.14.1. List of classes and instances of access control vocabulary

Meaning

Data class for access management

Role

Dataset (set of at least one item of data)

- 217 -

Table C.14.2. List of properties of access control vocabulary

Meaning

URI of dataset for roles

Belongs to dataset (for access control)

OAuth2 access token

Whether creation of data belonging to the dataset is authorized

Whether viewing data belonging to the dataset is authorized

Whether updating data belonging to the dataset is authorized

Whether deleting data belonging to the dataset is authorized

Harvesting method (for natural products)

Fastening method

Dataset rule validity

- 218 -

C.15. Geospatial vocabulary

 The geospatial concept includes anything in real space. When it is necessary to identify

features without actual substance, these may also be geospatial features. In addition to

physical elements such as mountains, buildings, and mobile entities, geospatial features

include elements such as administrative boundaries and points of interest.

 The namespace for the geospatial vocabulary specified by [11] and [12] is as follows.

http://uidcenter.org/vocab/ucr/ug#

 Below, this namespace is indicated as "ug:".

 Terms belonging to this vocabulary are as shown in Tables C.15.1 and C.15.2.

- 219 -

Table C.15.1. List of classes and instances of geospatial vocabulary

Meaning

Class of point information

Simple ucode entity of latitude, longitude, and altitude (ucode URI)

Point of interest

Class of geospatial categories

Any facility

Transport station

Public facility (government office, town hall, etc.)

Police facility

Firefighting facility

Financial facility

Postal facility

Medical facility

Welfare facility

Educational facility

Research facility

- 220 -

Meaning

Retail store facility

Food and drink facility

Cultural facility

Tourism facility

Leisure facility

Park

Means of public transportation

Service

Shared facility

Parking

Restroom

Elevator

Stairs

Escalator

Corridor

Ramp

Step or bump

- 221 -

Meaning

Moving walkway

Railway

Bus (bus route)

Ship (ship route)

Airline (air route)

Taxi

Sidewalk

Pedestrian way

Road without sidewalks

Marked crosswalk

Pedestrian overpass

Underpass

Railroad crossing

Ticket gate

Position for boarding

Bus stop

Taxi stand

- 222 -

Meaning

Entrance/exit

Installation

Platform

Spatial network node

Spatial network link

Entrance (for one-way use)

Exit (for one-way use)

Ascending direction of link

Descending direction of link

Class of spatial range or scope indicated by geographical feature

Coordinate reference system class

Class of range or scope where services are provided

Atom class of gisObject format under openGIS

WGS84 coordinate system (one instance of ug:CRS)

LRS of PI

Location of ucode tag or ucode mark

Grouping of multiple geographical features

- 223 -

Meaning

Floor of a building

Building

Room

Advertisement

ATM

Defibrillator (AED)

Baby crib

Baby changing station

Baggage room

Bench

Packed lunch shop

Café

Change machine

Changing room

Changing room (for men)

Changing room (for women)

Coin-operated locker

- 224 -

Meaning

Convenience store

Parcel delivery office

Emergency shelter

Event space

Facility for persons with disabilities

First-aid station

Currency exchange facility

General store

Lodging facility

ID photo booth

Information desk

Lost & found office

Lottery stand

Attractions and monuments

Nursing mothers room

Public telephone

Mailbox

- 225 -

Meaning

Baby break room

Smoking area

Souvenir store

Takeout restaurant

Ticket office or booth

Ticket vending machine

Disabled restroom

Vending machine

Waiting room

Geographical feature

Government office or government building

Government agency

Prefectural government office

City government office

Ward government office

Branch office

Town government office

- 226 -

Meaning

Village government office

Courthouse

Public health center

Administrative district

Prefecture

City

Ward

Town

Village

Religious facility

Church

Shrine

Temple

Mosque

Public transportation service route

Transport station, stop, or pier

Port

- 227 -

Meaning

Airport

Vehicle

Train

Car (automobile)

Bicycle

Motorcycle

Taxi

Bus

Ship

Aircraft

Road

Commercial facility

Mountain

Forest

Bamboo forest

Broadleaf forest

Coniferous forest

- 228 -

Meaning

Agricultural field or other field

Paddy

Cultivated field

Fruit orchard

Tea plantation

Mulberry plantation

Lake

River

Bridge

Residence

House (detached home)

Apartment building (as a whole)

Single dwelling unit in an apartment building

Factory

Funeral parlor

Cemetery

University

- 229 -

Meaning

High school

Professional school

Junior high school

Elementary school

Kindergarten or nursery school

Library

Museum

Elder care facility

Power plant

Lighthouse

Hot spring spa

Historical site

Literal in GeoJSON format

- 230 -

Table C.15.2. List of properties of geospatial vocabulary

Meaning

Relationship for describing information related to geographic location of the entity

Latitude and longitude represented according to extended ISO 6709 notation

Residence based on dwelling indication

Floor number. First basement is -1, semi-underground level is -0.5, ground floor is 1, mezzanine is 1.5, etc.

Proper name of a place or facility

Radius of the error circle (or sphere) in meters

Linked node entity

Geographical feature is the same as the geographical feature of the object (correlating a ug:Link type entity to an entity that
embodies the ug:linkTo relation).

Length of link. The recommended unit for this value is meters.

Direction of link. The recommended unit for this value is degrees clockwise from N as 0.

- 231 -

Meaning

Geographical feature contains the geographical feature of the object as a portion of itself.

Geographical feature is a portion of the geographical feature of the object.

Geographical feature is in the scope indicated by the object.

Geographical feature is contiguous with the object.

Spatial reference system that provides the basis for the scope

Postal code

Alternative geographical feature

Type of geographical feature

Alternative name of geographical feature

LRS for PI

LRS location type

- 232 -

Meaning

Starting point of spatial code indicating link node

Ending point of spatial code indicating link node

Weighted cost in link forward direction

Weighted cost in link backward direction

Center of gravity of the area

Photo, drawing, or other depiction of the geographical feature

Registrant of geographical feature

Place where the subject is located or indicated

- 233 -

C.16. Place accessibility vocabulary

 The vocabulary on the accessibility of places [10] is a vocabulary for describing the

physical accessibility of points of interest. The namespace for this vocabulary is as

follows.

http://uidcenter.org/vocab/ucr/spac#

 Below, this namespace is indicated as "spac:".

 Terms belonging to this vocabulary are as shown in Tables C.16.1 and C.16.2.

- 234 -

Table C.16.1. List of classes and instances of place accessibility vocabulary

Meaning

Spatial accessibility class of the geographical feature

Class of user types

Pedestrian

Wheeled luggage

Elderly person

Person with visual impairment

Wheelchair

Guide dog

4-wheel rolling walker

Stroller

Electric tricycle or electric cart

Class of things that improve spatial accessibility

Continuous tactile ground surface indicators

Discontinuous tactile ground surface indicators

Wheelchair-accessible facility

- 235 -

Meaning

Visual impairment accessible facility

Wheelchair accessible telephone

Extended green light function

Pedestrian signal

Roof (rain shelter)

Wheelchair accessible fax machine

Audio signals for guidance

Attendant employed at facility

Class of things that reduce spatial accessibility (barriers)

Step or bump

Small step or bump

Medium step or bump

Large step or bump

Roadway

Gutter

Railway track

Ramp

- 236 -

Meaning

Ramp in direction of travel

Ramp in transverse direction

Grate covered gutter

Wall

Utility pole

Bollard

Car parked on the street

Bicycle parked on the street

- 237 -

Table C.16.2. List of properties of place accessibility vocabulary

Meaning

Spatial accessibility of a geospatial feature

Target user type

Geospatial feature has something that improves spatial accessibility

Geospatial feature has something that reduces spatial accessibility (barrier)

Barrier exists along the boundary of the geospatial feature

Barrier exists along the left side of the geospatial feature

Barrier exists along the right side of the geospatial feature

Width of passage

Width to the left of center of the passage

Width to the right of center of the passage

- 238 -

C.17. Unit system vocabulary

 The unit system vocabulary is a vocabulary for describing physical quantities, monetary

units, and so on. The namespace for this vocabulary is as follows.

http://uidcenter.org/vocab/ucr/uc#

 Below, this namespace is indicated as "uc:". This is the same as in section C.13

(Vocabulary for basic classes and physical quantities of subject matter).

 Terms belonging to this vocabulary are as shown in Tables C.17.1 and C.17.2.

- 239 -

Table C.17.1. List of classes and instances of unit system vocabulary

Meaning

Class of units

Class of physical amounts

Class of currency units

Meter unit

Gram unit

Second unit

Minute unit

Hour unit

Day unit

Month unit

Year unit

Square meter unit

Cubic meter unit

Ampere unit

Volt unit

- 240 -

Meaning

Lux unit

Degree Celsius unit

Degree Fahrenheit unit

Percent

Hectopascal unit

Sunny

Cloudy

Rain

Snow

- 241 -

Table C.17.2. List of properties of unit system vocabulary

Meaning

Unit

- 242 -

C.18. Event vocabulary

 The event vocabulary is a vocabulary for describing events managed by the open data

distribution platform. The namespace for this vocabulary is as follows.

http://uidcenter.org/vocab/ucr/event#

 Below, this namespace is indicated as "ev:".

 Terms belonging to this vocabulary are as shown in Tables C.18.1 and C.18.2.

- 243 -

Table C.18.1. List of classes and instances of event vocabulary

Meaning

Class of events

Event of the target being issued

Event of the target being changed

Event of target information being changed

Event of the target being extinguished

Shipping event

Delivery event

Arrival event

Cargo division (split) event

Cargo combination event

Purchase event

Review (human evaluation) event

Transaction event

- 244 -

Table C.18.2. List of properties of event vocabulary

Meaning

Event type

Summary explanation of the event

Explanation of the event

Place of event occurrence

Place at the time when the event starts

Place at the time when the event ends

Event owner (creator or manager)

Owner at the time when the event starts

Owner at the time when the event ends

Time and date of event occurrence

- 245 -

Meaning

Time and date when the event starts

Time and date when the event ends

Target of the event

Target at the time when the event starts

Target at the time when the event ends

Photo, audio, video, or other depiction of the event

Depiction at the time when the event starts

Depiction at the time when the event ends

Name of the event

Owner's comments concerning the event

- 246 -

C.19. Geographic information service vocabulary

 The geographic information service vocabulary is a vocabulary for describing service

information related to geospatial features and facilities. The namespace for this

vocabulary is as follows.

http://uidcenter.org/vocab/ucr/ugsrv#

 Below, this namespace is indicated as "ugsrv:".

 Terms belonging to this vocabulary are as shown in Tables C.19.1 and C.19.2.

- 247 -

Table C.19.1. List of classes and instances of geographic information service vocabulary

Meaning

Class of summary information

Class of basic information

Class of temporary information

Class of themes

Class of categories

Class of subcategories

Class of explanatory information

Class of subthemes

- 248 -

Table C.19.2. List of properties of geographic information service vocabulary

Meaning

Key words

Business days and regular holidays

Start date

End date

Fee

Review URL

Access method

Postal code

Address

- 249 -

Meaning

Fax number

Remarks

Japanese phonetic spelling of address

Product information

Telephone number

Closest transport station or stop

Service start time

Service end time

Subcategory name

URL of image file

- 250 -

Meaning

Type of tag

URL of audio file

Maximum value

Minimum value

URL of video file

Minimum age for use

Category to which the content belongs

Maximum age for use

Category name

Theme to which the content belongs

Upper-level theme of the subject

- 251 -

Meaning

Upper-level category of the subject

Year of installation

Distribution

Source of installation

Business days

Closed days (regular holidays)

Local government that manages the content

Association that manages the content

Coupon URL

ucode of site tag

QRucode of site tag

- 252 -

307

Meaning

RFIDucode of site tag

Serial number of site tag

Association that manages the site tag

Usage status of site tag

Local government that manages the site tag

Alternative URL

Association that manages the site

Local government that manages the site

- 253 -

C.20. Vocabulary for products and goods

 The namespace of the vocabulary for products and goods is as follows.

http://uidcenter.org/vocab/ucr/uobj#

 Below, this namespace is indicated as "uobj:".

 Terms belonging to this vocabulary are as shown in Tables C.20.1 and C.20.2.

- 254 -

Table C.20.1. List of classes and instances of vocabulary for products and goods

Meaning

Class of products and goods

Class of equipment reference materials

Manager (user) of equipment

Industrial product

Agricultural product

Marine product

Forestry product

Traditional craft

- 255 -

Table C.20.2. List of properties of vocabulary for products and goods

Meaning

Date acquired

Owner (manager)

Management location

Viewing of attributes (object) is permitted

Writing of attributes (object) is permitted

JAN code of the equipment is to be integrated into dc:identifier

Person responsible for management of the equipment

Number of times the equipment label has been printed

Management number of product or goods

Name of product or goods

- 256 -

Meaning

Summary explanation of product or goods

Detailed explanation of product or goods

Link to instructions for product or goods

Level

Producer

Date when produced

Place where produced

Place acquired (place of purchase)

Type of product or goods

Expiration date (use by date, etc.)

Size

- 257 -

Meaning

Subject is contained in object (inside it)

Subject contains object

- 258 -

C.21. Vocabulary for transactions

 The namespace of the vocabulary for transactions is as follows.

http://uidcenter.org/ucr/vocab/trans#

 Below, this namespace is indicated as "trans:".

 Terms belonging to this vocabulary are as shown in Tables C.21.1 and C.21.2.

- 259 -

Table C.21.1. List of classes and instances of vocabulary for transactions

Meaning

Class of transactions

Class of receipts

Class of transaction units (subset of the class of transactions)

- 260 -

Table C.21.2. List of properties of vocabulary for transactions

Meaning

Creditor of transaction

Debtor of transaction

Price unit

Addressee (not address) of receipt

Name of store

Address of store

Telephone number of store

ucode signature

Settlement complete flag

Reference transaction

- 261 -

Meaning

Receipt before division

Receipt after division

Time and date when transaction occurred

- 262 -

C.22. Vocabulary for basic attributes of pharmaceutical products

 The vocabulary for the basic attributes of pharmaceutical products is a vocabulary for

describing information related to pharmaceutical products. Categories of pharmaceutical

products are based on The Japanese Pharmacopoeia, Sixteenth Edition [53]. Some

commonly used category names have also been added. The namespace for this

vocabulary is as follows.

http://uidcenter.org/vocab/ucr/med#

 Below, this namespace is indicated as "med:".

 Terms belonging to this vocabulary are as shown in Tables C.22.1 and C.22.2.

- 263 -

Table C.22.1. List of classes and instances of vocabulary for basic attributes of pharmaceutical products

Meaning

Pharmaceutical product

Prescription medication (pharmaceutical product requiring a prescription)

Over-the-counter pharmaceutical product

Oral medication

Medication for injection

Medication for external use

Dermatological medication

Ointment or liniment

Patch

Topical aerosol

Eye drops

Nasal drops

Oral cavity medication

Mouthwash

Spray medication

- 264 -

Meaning

Suppository

- 265 -

Meaning

Ointment for rectal infusion

Enema

Preparation for oral administration

Tablet

Orally disintegrating tablet

Chewable tablet

Effervescent tablet

Dispersible tablet

Soluble tablet

Capsule

Granules

Effervescent granules

Powder

Oral liquid

Elixir

Suspension

Emulsion

- 266 -

Meaning

"Lemonade" (sweet, tart, clear drink) preparation

Syrup

Preparation for syrup

Gel for oral administration

Preparation for application in the oral cavity

Tablet for use in the oral cavity

Lozenge

Sublingual tablet

Buccal tablet

Mucoadhesive tablet

Chewing gum

Spray for use in the oral cavity

Semisolid application for use in the oral cavity

Oral rinse

Preparation for administration by injection

Infusion solution

Injectable implant preparation

- 267 -

Meaning

Sustained-delivery injection

Preparation for dialysis

Dialysis agents

Peritoneal dialysis agents

Hemodialysis agents

Preparation for bronchial and lung inhalation

Inhalant

Insufflation powder

Liquid inhalant

Aerosol inhalant

Preparation for ophthalmic application

Ophthalmic preparation

Ophthalmic ointment

Preparation for application in the ear

Ear drops

Preparation for nasal application

Nasal drops

- 268 -

Meaning

Nasal powder

Nasal solution

Preparation for rectal application

Suppository

Semisolid preparation for rectal application

Enema

Preparation for vaginal application

Vaginal tablet

Vaginal suppository

Preparation for cutaneous application

Solid preparation for external use

Powder for external use

Liquid preparation for external use

Liniment

Lotion

Spray

Aerosol for external use

- 269 -

Meaning

Pump spray

Cream

Gel

Tape

Patch

- 270 -

Table C.22.2. List of properties of vocabulary for basic attributes of pharmaceutical products

Meaning

Subject has object as an ingredient

Name of a medicine

Individual pharmaceutical product code (registration code)

JAN code (product code)

Type of medicine

Subject is given the pharmaceutical product of object

Explanation of medicine (package insert)

Supplementary explanations and comments about the medicine

