External Specifications for
Open Data Distribution Platform Systems

Version 2.0

1.

Table of Contents

T T [N ot AT] o ST R 1
1.1. Background and PUIPOSE.cc.ueiuieieiierieeiestieseete e steeaestaesreeaesnaesneeseesnaesreeeeaneesreas 1
1.2, SCOpPE Of SPECITICALIONcveiiiiieieictc i 2
1.3. Expressions concerning requirements, prohibitions, and permissionsc....... 3
1.4, SPecification POIICIESciiiiiieiiie e 3

1.4.1. Compatibility and interoperability with existing standards...............ccceevevvvrvenenn 4

1.4.2. Identification targets and MEthOdS...........oovueiiiieiierece e 5

1.4.3. Selective provision and expansion of funCtions...........c.ccccecviveiiieve i ciecse e, 6
1.5 Terminology definitiONS.........ccoiiiiiiiiiieie e 6
1.8 RETEIBNCES ...ttt bbbttt bbbttt eas 7
1.7, REVISION NISTOTY ...ttt bbb 11

ODDP data STANUAITSeeuverieieiiesiesie ettt ee s 12
S I I - - 1 1 Lo [OSSPSR 12
2.2. Data representation fOrMALSccceeiiiiiiie i 12
2.3, VOCADUIAIY ...ttt bbbttt 12

OVErVIEW OF ODDP AP ..ottt bbb 14
T8 I (0] (oo OSSPSR 15
3.2. unctions corresponding to HTTP mMethodscccooveieiieiicic e 15
3.3, TTP STAIUS COUBSveveeneeeiiesiee sttt ettt ettt e et e e e raebeeneesreeneeeneesreenneens 15
3.4. Request and response FOrMALS.........c.ccviiiiieiiciic e 16

3.4.1. Format of Message DoAYccooiiiiiiiiiiee e 16

3.4.2. Request success or failure and message body content............cccccevvevreiesiennnn, 17

3.4.3. RUIES ON reSPONSE PAGING. .. c.veiieriiiieeiieieieite sttt 18

3.4.4. RuUleS 0N URINOTALIONocviiiiiiiiiiiicieieie et 18
TR B - - 8 0] 12T £ PSSS 19
3.6. RDF expressions requesting automatic ucode iSSUING...........coeeeereerieieeiieerieseennen, 19
3.7, SHEAMS AP ..ottt e beenaee s 20
3.8. Other COMMON PrOVISIONS.........cciviiiiieiie sttt sre e re e e 20

DetailsS Of ODDP APLL.....oc ettt este e e s e sneeeeenes 21
4.1. SPARQL-baSed COMMANGScooueiirieirieiiriecee et sttt et see b st ere e eareebeesaee s 21

4.1.1. Issuing queries based on SPARQL 1.1: GET methodcccccevvriiiiiiiiicnnn 21

4.1.2. Issuing queries based on SPARQL 1.1: POST methodcccoveveieeciiienen, 24

4.1.3. Viewing RDF graphs ..o 26

4.1.4. AddiNg RDF graphsc.ccovoiiiiiiiecie ettt sne s 28

4.1.5. Updating RDF graphs ... 30

4.1.6. Deleting RDF graphsccocoiiiiiicic et 31
4.2. Traceability and real-time data management COmMmMands...........cccocoevveneneneninneenn, 32

4.2.1. Searching fOr @VENTS.........cciiiiiiic e 33

4.2.2. REQISIEIING NEW BVENLSoviviitiitiitisieeit ettt bbb 36

4.2.3. VIBWING BVENTES....c.tiiiiieitie it ciee et stee et e et st e et e s te e sae e et e e steeenseesneeabeeareeas 38

4.2.4. Viewing events: SPecifying Propertiesccooviriririnieieiene s 40

4.2.5. UPAatiNg BVENTSooiiiiiie ettt ae e 41

4.2.6. Updating events: SPecifying Properties........cccuiviriririeiieiene s 43

4.2.7. DEIELING BVENTS.....oiiiii ettt ra e ae e ree s 45

4.2.8. Deleting events: SPecifying Propertiesccocoueiiriiiiieieiene s 46

4.2.9. PerfOrmMINg traCES .. .cvveiie ittt e et ae e e ae e ree s 47
4.3. Geographic data management COMMANGScooerireririeninieie e 49

4.3.1. Searching for place iNfOrmation.............ccccooiieii i 51

4.3.2. Registering new place iNfOrmationcccoooeiieiiiinnieie e 54
4.3.3. Viewing place infOrmationcccciiieiieriiiie i 56
4.3.4. Viewing place information: Specifying Properties..........cccoceeerenirienienieeieenienns 58
4.3.5. Updating place infOrmationcccooieiieii i 59
4.3.6. Updating place information: Specifying properties...........ccccoceveneriinivnieiecnienns 61
4.3.7. Deleting place infOrmationc.ccviieiieiiiie i 63
4.3.8. Deleting attributes of place iINfOrmationcc.cooviiiieiiiini e 64
4.3.9. Moving inclusion relationships of place information...........c..ccccccevevivericiennnn, 65
4.4. Security management COMMEANGSccoviieierirerenises e 66
4.4.1. Searching fOr FOIESocveiiei e 68
4.4.2. RegIStEriNg NEW FOIES.......oiiiiiiie ettt 71
A4.4.3. VIBWING OIS ...ttt aa e e reeaeanaenreas 74
4.4.4. Viewing roles: Specifying Properties.........ccccoeveiiriiiinieieiene e 75
445, UPAating FOIES......eoiiieiecie ettt reeae e nre s 77
4.4.6. Updating roles: Specifying Propertiescccovveverenieieiene e 79
4.4.7. DEIEING OIS ..ottt te e nre s 81
4.4.8. Deleting attributes of r0les...........coiiiiiiii 82
4.4.9. Searching data SELS........cccciiieriiiieiieie et reeae e sre s 83
4.5. Notification management COMMANGScoerereririninieeiee e 85
4.5.1. Searching for NOtIfICAIONScccveviiiiiie e 87
4.5.2. Creating New NOLTICALIONScoiiiiiiiciee e 89
4.5.3. Viewing notification informationcccoveiieiiiiciiecce e 92
4.5.4. Updating notification informationccccooeiiiiniiiiieiceee e 94
4.5.5. Deleting NOtTICALIONS........ceciiiieiieie e 95
4.5.6. Starting or resuming NOtITICAtIONS.ccooveriiiiiiiie e 96
4.5.7. Stopping NOLTICALIONScceciiiieiieeie e 97
4.6. Vocabulary management COMMANGSccoeruiriereriererinesieee e 99
4.6.1. Searching fOr tEIMSccooiiii e 99
4.6.2. Creating NEW TEIMNSc.uiiiiieieiieiiesieee ettt 102
4.6.3. VIBWING TEIMSviiiiiiiii ettt et sreenaeeneesre e e 105
4.6.4. Viewing term information: Specifying Propertiescccococerereneneneniennenn, 108
4.6.5. Updating term informationc.cccoeviiiiiieie e 109
4.6.6. Updating term information: Specifying Properties..........ccccocevvvvenenenesieeinennn, 111
4.6.7. DeletiNg tEIMS......ooiiieii et re e 113
4.6.8. Searching fOr SYNONYIMS........coiiiiiiiieieee et 114
4.6.9. Updating synonym informationccccovvveviiieie v 115
4.6.10. Searching fOr Parent tEIMScooiiiiiieiere e 116
4.6.11. Updating parent term information............ccccccoeiveii i, 118
4.6.12. Searching for Child termMSccccuoiiiiii e 119
4.7. Triple management COMMANGScccveeiieeiiiieiie e sree e ee e 121
4.7.1. Searching for public datacoiiiiiiiii e 121
4.7.2. Creating Nnew Public dataccceeivieiiiiiic i 123
4.7.3. Viewing PuBliC data.........coocoiiiiiiiiiiiice e 125
4.7.4. Viewing public data: Specifying properties..........cccccoevvveevieiiieeieesine e 126
4.7.5. Updating public data..........ccooeiiiiiiiiiice e 128
4.7.6. Updating public data: Specifying properti€s...........ccccevvvevveiireeieesieeseesve e 130
4.7.7. Deleting public data..........cccooeiiiiiiiiice e 131
4.7.8. Deleting attributes of public data.............ccccceeviiiiiicc 132
4.8. Identification resolution COMMANGS..........ccvirieiierieriiese e ee e 133
4.8.1. Simplified ucode reSOIUtIONccoviiiiiiieiie s 134

4.8.2. ucode resolution: Obtaining referent of public data from ucode....................... 136
4.8.3. Creating new ucode resolution information............c.ccceeeieeiiiie v, 138
4.8.4. Updating ucode resolution informationccoceeovvirieiiienineneeeseees 140
4.8.5. Deleting ucode resolution iNformationcccccevvveveiieiicci e 141
Appendix A. SUMMArY OF RDFc.ooiie e 143
A.l. RDF model and RDF graphs.......ccooiiiiiiiiie e 143
A2 R SYNTAXttieiieie ittt ettt e et e e e e s bn e e anne e 143
A.3. RDF graph searching With SPARQLcccccveiiiiiiiieie e 144
Appendix B. SUMMArY Of UCOUE........cc.ooiiiiiiiiiiiecee e 146
B.1. Definition Of UCOUE.........oiiiiiiiiiiiiieieeieie e 146
B.2. FEALUIES OF UCOUE. ... ittt nne s 147
B.3. Relationship between ucode and RDFccccocveviiiiiiicic e 148
ApPPendix C. VOCADUIAIY TISTSc.viiiiiiiieie e 149
C.1. Vocabulary for basic RDF StrUCLUIE.........ccceiveiieiieiieie et 149
C.2. ol 17 1 - LSRR 152
(O T © L OSSPSR 155
C4. DUDBIiN COre BlEMENTS.......cciiiieiieciee e e 163
C.5. DCMIVOCADUIAIYoeoviiiecieee st 166
C.6. DUDIIN COrE tYPES.....eeuieeeieieirie ettt 176
G, FOF ettt r s 178
C.8. GeoSPARQL VOCADUIAIYccoiiiiiiieeeece e 186
C.9. BasSiC GEO VOCADUIAIY.........ccveiiieiecieee et 191
C.10. Data Catalog (DCAT) VOCEDUIANYccveiiiiiriiiiiieiieee e 194
C.11. RDF Data Cube VOCADUIAIYc.cciveiiiiieiieiiecc e 198
C.12. Simple Knowledge Organization System (SKOS).......cccoceviriiineniiniininnee 203
C.13. Vocabulary for basic classes and physical quantities of subject matter............... 208
C.14. Access CONLrol VOCADUIAIYccoviiiiiiiiieic e 215
C.15. Geospatial VOCADUIAYcccocouiiiiieece e 218
C.16. Place accessibility VOCADUIAIYccooiiiiiiiiiiee e 233
C.17. Unit system VOCADUIAIYcceoiiiieie et 238
C.18. EVENTVOCADUIAIY ... e 242
C.19. Geographic information service vocabularyccccoccevviiiiiciieiecce e 246
C.20. Vocabulary for products and goods............coceriririninieiee e 253
C.21. Vocabulary for tranSacCtions............cceiiiieiieiice e 258
C.22. Vocabulary for basic attributes of pharmaceutical products..............ccccveveivennne. 262

List of Figures

Fig. 1.1. Overview of the open data distribution platform (ODDP)cccccviniinivniiiicienn 1
Fig. 1.2. Example configuration of open data distribution platformccccccovevviieiiennnnn, 3
Fig. 3.1. Configuration of open data distribution platform systemscc.ccocviiiiiiiciennn. 15
Fig. 4.1. Access control using security management cOmMmandscccoceeveereereseeseennenns 67
Fig. 4.2. Example of access CONtrol StAtEMENTScoeveriiiiiiieieeee e 68
Fig. A.1l. Example of RDF graph.......cccoooiiiiiie i 143
Fig. A.2. Example of RDF graph StOrageccoceoueiieieiiniiiiieeccese e 145
Fig. B.1. StruCture OF UCOUEecveivieii ettt 147
Fig. B.2. Example of RDF graph containing UCOTE..............corviieiiieieieiesc e 148

-V -

List of Tables

Table 1.5.1. Terminology definitioNscooiiiiiiiiii e 7
Table 1.7.1. ReVISION NISTOIYiiiiiicie ettt nne s 11
Table 3.2.1. elationship between functions and HTTP methodsccccoevviveinninnciinnenn, 15
Table 3.3.1. tatus codes Of ODDP AP ..o 16
Table 3.4.1. Header values indicating RDF graph expression format...........c.cc.ccoovvviiveinennn. 17
Table 3.4.2. Error mesSage ParameEterS.......ccuciueiieereerieaieseesieeeesteeseeseesseesseesesseesseessessessens 18
Table 3.4.3. Parameters of error messages for Paging.........ccocvvvririeieienenene e 18
Table 3.5.1. Data formats defined in these specificationsc.ccccvveveiieviv e, 19
Table 4.1.1. List of SPARQL-based COMMANTS..........ccoviieriririieiieie e 21
Table 4.1.2. Parameters for issuing queries based on SPARQL 1.1 (GET method) 22
Table 4.1.3. Accept header values specifying response format for SELECT operations......22
Table 4.1.4. Accept header values specifying RDF graph format of response...................... 22
Table 4.1.5. Accept header values specifying binary value format of response.................... 22
Table 4.1.6. Status codes when issuing queries based on SPARQL 1.1 (GET method) 23
Table 4.1.7. Parameters for issuing queries based on SPARQL 1.1 (POST method) 25
Table 4.1.8. Status codes when issuing queries based on SPARQL 1.1 (POST method).....25
Table 4.1.9. RDF graph VIEWINgG Parameterscccoeoereriiirenieieieseese e 27
Table 4.1.10. Status codes when viewing RDF graphs..........cccccoveiieieiieie e 27
Table 4.1.11. RDF graph VIEWING PArameLersccceeerueririeriinieieeeniesie e 29
Table 4.1.12. Status codes when adding RDF graphs...........ccccociviiieie i, 29
Table 4.1.13. RDF graph VIEWING PArameterscccoeerereririenieieiesiesie e 30
Table 4.1.14. Status codes when updating RDF graphsccccooeiveieiieve e 30
Table 4.1.15. RDF graph deletion parametersccocveeiiereeienieneeie e ee e 32
Table 4.1.16. Status codes when deleting RDF graphs...........ccccovveiieieiieveeic e 32
Table 4.2.1. List of traceability and real-time data management commandsccccoc..... 33
Table 4.2.2. Event search parametersccooiiieieeiiiie e 33
Table 4.2.3. Event Search parametersccoiiiiiiiieie e 34
Table 4.2.4. Status codes when searching for eVENtS...........cccveveiieiieie i, 35
Table 4.2.5. Status codes when regiStering NEW EVENTScccovriririeriene e, 36
Table 4.2.6. Response format for new event registrationc.cccccveveieeve e cic s, 36
Table 4.2.7. EVENt VIEWING PAFAMETEIS.ciiiieiiiieieiee ettt 38
Table 4.2.8. Status codes When VIEWING EVENTS........ccvcveiieieiieieesie e 39
Table 4.2.9. Parameters for event viewing when specifying propertiesccccocvevvevenen. 40
Table 4.2.10. Status codes when viewing events and specifying propertiescc.coc..... 40
Table 4.2.11. Status codes when updating BVENTS............cooiiiiiiinieieree e, 42
Table 4.2.12. Status codes when updating events and specifying propertiesc..c....... 44
Table 4.2.13. Status codes when deleting VENTS.........cccocoieiiriiiniieee e, 45
Table 4.2.14. Status codes when deleting events and specifying propertiescccccve.e.. 46
Table 4.2.15. Parameters for performing @ traCecocovceiireiinieierese e, 47
Table 4.2.16. Status codes when performing @ traCecccooveveeiiiieiie s 48
Table 4.3.1. Geometric data representation fOrmat.............ccocevviiniieiene e, 50
Table 4.3.2. List of geographic data management cOmmands............cccoccvevveiieesieereesne e 50
Table 4.3.3. Place information search parametersccooeiiririnieierese e, 51
Table 4.3.4. Place information search parameterscccceovveiieiieeiiee e 52
Table 4.3.5. Place information Search parametersccoceveriririeierene e, 52
Table 4.3.6. Status codes when searching for place information............c.cccccoeveeiiiiiicinnenne, 53
Table 4.3.7. Status codes when registering new place information..............ccococvvriiiiniennn, 55
Table 4.3.8. Response format for new place information registration..............cccccceevvevnnnnne. 55

Table 4.3.9. Status codes when viewing place information...........cccccceveviininienienenenien, 57

Table 4.3.10. Status codes when viewing place information and specifying properties........ 58
Table 4.3.11. Status codes when updating place information.............ccccccoevennininiieicienen, 60
Table 4.3.12. Status codes when updating place information and specifying properties.......62
Table 4.3.13. Status codes when deleting place information.............ccccoceeeieniiiniiniieicienn, 63
Table 4.3.14. Status codes when deleting attributes of place informationc.ccccee.... 64
Table 4.3.15. Status codes when moving inclusion relationships of place information......... 66
Table 4.4.1. List of security management COMMANGSccocoveiieerierieiieeseere e 68
Table 4.4.2. Role SEArch ParametersScccvoiiieieieierie et 69
Table 4.4.3. Status codes when searching for roleSccccovveveiieiiieie i, 70
Table 4.4.4. Status codes when regiStering NEW rOIEScccveveiieiieieiie e 72
Table 4.4.5. Response format for new role registration............c.cccceevveveiieviene e, 72
Table 4.4.6. Status codes When VIEWING FOIESccoiiiiiiiiiiiieeee e 74
Table 4.4.7. Status codes when viewing roles and specifying properties...........cccccceevevuennn. 76
Table 4.4.8. Status codes when updating roleScccoreiiiiiiiinieeee e, 78
Table 4.4.9. Status codes when updating roles and specifying properties...........ccccceevevvenen. 80
Table 4.4.10. Status codes when deleting roles ..., 82
Table 4.4.11. Status codes when deleting attributes of roles..........ccccocvvvveiviiecc i, 83
Table 4.4.12. Data Set Search Parameters..........oovveiiireieiieee e 84
Table 4.4.13. Status codes when searching data SetS...........ccoveveiiieiieie i s 84
Table 4.5.1. Properties associated with notifications and their values (objects) 86
Table 4.5.2. List of notification CONAItIONS.........ccerviriiiiiie e, 86
Table 4.5.3. List of notification management COMMANGS............ccuevveirrenereninieneseeeeeeen, 86
Table 4.5.4. Notification Search Parametersccevveieiiieie e 87
Table 4.5.5. Status codes when searching for NOtifications.............cccovveieienininicceee, 87
Table 4.5.6. Status codes when creating new notificationsc.ccceceevvveviieie s, 90
Table 4.5.7. Response format for creation of new notifications............cccccovevevvrienieeninsinnen, 90
Table 4.5.8. Status codes when viewing notification information..............cccccovevieiiiiennn, 92
Table 4.5.9. Response format for viewing notification information.............c.cc.ccoevvviinnennn, 92
Table 4.5.10. Status codes when updating notification information...................ccccoeeiienn, 94
Table 4.5.11. Status codes when deleting NOtIfiCationS............cooviiereniiene, 96
Table 4.5.12. Status codes when starting or resuming notifications...............cccccccevveveiiennn, 97
Table 4.5.13. Status codes when stopping NOLITICALIONSccovviiiireniie e, 98
Table 4.6.1. List of vocabulary management commandsccccoovveveiievrevieciee s, 99
Table 4.6.2. Term SEarch ParametersSccouiieieieieie et 99
Table 4.6.3. Status codes when searching for terms...........ccccocvveviiiiii i 100
Table 4.6.4. Status codes when Creating NEW tErMSccovvriririeiieiese s 102
Table 4.6.5. Response format for creation of New terms..........cccoccevveveeic e 102
Table 4.6.6. Status codes When VIEWING TEIMSoouiiiiiiiiiiinieeee e 105
Table 4.6.7. Status codes when viewing term information and specifying properties 108
Table 4.6.8. Status codes when updating term information............ccocooeniieienininieieen 110
Table 4.6.9. Status codes when updating term information and specifying properties 112
Table 4.6.10. Status codes when deleting termMSoooveiiiiiiiince e 113
Table 4.6.11. Status codes when searching for Synonyms............ccccocvevie e e s, 114
Table 4.6.12. Response format for Synonym SEarches............ccocuvvevienene s 114
Table 4.6.13. Parameters for updating synonym informationcccccevvevieiieciiecinnnnn, 115
Table 4.6.14. Status codes when updating synonym informationccccoeevevnivniiiennenn 116
Table 4.6.15. Status codes when searching for parent terms...........ccccevveiiecvie e s, 117
Table 4.6.16. Response format for parent term Searches..........ccoceovvereneieneneseeeeens 117
Table 4.6.17. Status codes when updating parent term information..............cccccoeveevieinnnn, 119

-Vi -

Table 4.6.18.
Table 4.6.19.
Table 4.7.1.
Table 4.7.2.
Table 4.7.3.
Table 4.7.4.
Table 4.7.5.
Table 4.7.6.
Table 4.7.7.
Table 4.7.8.
Table 4.7.9.
Table 4.7.10.
Table 4.7.11.
Table 4.7.12.
Table 4.7.13.
Table 4.8.1.
Table 4.8.2.
Table 4.8.3.
Table 4.8.4.
Table 4.8.5.
Table 4.8.6.

Table 4.8.7.

Table 4.8.8.

Table 4.8.9.
Table 4.8.10.
Table 4.8.11.
Table 4.8.12.
Table 4.8.13.
Table 4.8.14.
Table C.1.1.
Table C.1.2.
Table C.2.1.
Table C.2.2.
Table C.3.1.
Table C.3.2.
Table C.4.1.
Table C.5.1.
Table C.5.2.
Table C.6.1.
Table C.7.1.
Table C.7.2.
Table C.8.1.
Table C.8.2.
Table C.8.3.
Table C.9.1.
Table C.9.2.
Table C.10.1

Status codes when searching for child terms...........ccccoeviiiiiiiiiice s 120
Response format for child term searches...........cccooevvevi i 120
List of triple management COMMANGS...........c.cooeiiriiinieiieiee e 121
Public data Search parameters..........cccvieiieieeieese e 121
Status codes when searching for public datacccoeveieiiiiiniicee, 122
Status codes when creating new public data............ccccooevieiieiie i, 124
Response format for new public data Creation..............cccceoeiiiiniinniniicienn 124
Parameters for viewing public datacccccoveiiiiiiic e 125
Status codes when viewing public dataccocevviiiieiiienee, 125
Parameters for viewing public data and specifying properties.............c.c........ 127
Status codes when viewing public data and specifying properties.................. 127
Status codes when updating public data ..o, 129
Status codes when updating public data and specifying properties............... 130
Status codes when deleting public data ..., 132
Status codes when deleting attributes of public data..............ccccoovrviiiiennen, 133
List of identification resolution COMMAaNGSccccervrrereneienineseeeee e 134
Simplified ucode resolution PArametersccocevvrerieierenese e, 134
Ucode resolution Search parametersoccoeveeieeiesieseeresee e esee e 135
Status codes in simplified ucode resolution...........cccoccveeiieniiie e, 135
Response parameters in simplified ucode resolution............ccccccveveveiieiinenenn, 136
Parameters for ucode resolution (obtaining referent of public data from
0ol 0 [TSSO SPRSURTI 137
Status codes in ucode resolution (obtaining referent of public data from
0ol 0 [TSSO SPRSURTI 137
Response parameters in ucode resolution (obtaining referent of public
data fromM UCOUE)ccveeeeieiicece et 137
Parameters for creating new ucode resolution information.............c..ccccoeu..... 139
Status codes when creating new ucode resolution information..................... 139
Response format for creation of ucode resolution information...................... 139
Parameters for updating ucode resolution information................ccccooeveinenen, 140
Status codes when updating ucode resolution informationcccccceveveen 141
Status codes when deleting ucode resolution information...............cccccoceveneen 142
List of classes and instances of vocabulary for basic RDF structure............... 150
List of properties of vocabulary on basic RDF structure...........cccccccevevvvennnne. 151
List of classes and instances of RDF schema..........ccccccevoveiiieinscc s 153
List of properties of RDF SChema...........cccoveiieiicic e 154
List of classes and instances Of OWLccovveeiieieninne e 156
List of propertieS 0f OWLcovoiieiiiicceee e 158
List of properties of Dublin Core elements..........covvieiiieieniseeeees 164
List of classes and instances of DCMI vocabularycccccoceeveeiiiiinciinne, 167
List of properties of DCMI VOCaDUIAIY...........ccocoiiiiiiiiiieie e 170
List of classes and instances of Dublin Core types.........cccccevvviieeiiccieccieenne, 177
List of classes and instances Of FOAFccccceviieiiieie e 179
List of properties Of FOaF..........ccooiiiiiiiiccc e 180
GEOSPARQL NAMESPACES.oiteemririeeiiieiisiiesieeie ettt 186
List of classes and instances of GeoSPARQL vocabulary............ccccccevevienee. 187
List of properties of GeoOSPARQL vocabularycccocvevviiinciiiiiie, 189
List of classes and instances of Basic Geo vocabularyccccoovveiiiiinnne. 192
List of properties of Basic Geo vocabulary...........ccccoceoiiieniiiicinices 193
. List of classes and instances of Data Catalog Vocabulary (DCAT) 195

- Vil -

Table C.10.2. List of properties of Data Catalog Vocabulary (DCAT).....ccccevvvvrinivennnnnen 196

Table C.11.1. List of classes and instances of RDF Data Cube vocabulary......................... 199

Table C.11.2. List of properties of RDF Data Cube vocabularycccccovvvivniiiiniieninne 201

Table C.12.1. List of classes and instances of SKOS (Simple Knowledge Organization
YY1 (=] 1 1) OSSPSR URTRTR 204

Table C.12.2. List of properties of SKOS (Simple Knowledge Organization System)........ 205
Table C.13.1. List of classes and instances of vocabulary for basic classes and physical

quantities of SUDJECT MALErcov i 209
Table C.13.2. List of properties of vocabulary for basic classes and physical quantities

OF SUDJECT MALLET ... 210
Table C.14.1. List of classes and instances of access control vocabularycccccceuenee. 216
Table C.14.2. List of properties of access control vocabulary.............ccccccevveviveieivcivennnne, 217
Table C.15.1. List of classes and instances of geospatial vocabularyccccooeeenennn. 219
Table C.15.2. List of properties of geospatial vocabulary............c.ccccoovevviieiieni e 230
Table C.16.1. List of classes and instances of place accessibility vocabulary 234
Table C.16.2. List of properties of place accessibility vocabulary.............ccccoeeviveiiennnnne. 237
Table C.17.1. List of classes and instances of unit system vocabularyccccooeiennnn 239
Table C.17.2. List of properties of unit system vocabulary..............cccooevvvieiieiiiic e, 241
Table C.18.1. List of classes and instances of event vocabularyc.ccoconiniiiicnn. 243
Table C.18.2. List of properties of event vocabularycccccevviiiiiiieseee e 244
Table C.19.1. List of classes and instances of geographic information service vocabulary.247
Table C.19.2. List of properties of geographic information service vocabulary.................. 248
Table C.20.1. List of classes and instances of vocabulary for products and goods.............. 254
Table C.20.2. List of properties of vocabulary for products and goodscccccevvennenne. 255
Table C.21.1. List of classes and instances of vocabulary for transactions...............c.cce.... 259
Table C.21.2. List of properties of vocabulary for transactionsccccoecevvveveiieivennene, 260
Table C.22.1. List of classes and instances of vocabulary for basic attributes of

pharmaceutical PrOUUCEScoviiiiiie e 263
Table C.22.2. List of properties of vocabulary for basic attributes of pharmaceutical

PROTUCES ...ttt et e e et e s te et esaeesre e s e ersesbeenaeeneesre s 270

- viii -

1.

Introduction

1.1. Background and purpose

With the advances of recent years in information and communication technology (ICT)
and growth of the information infrastructure, ubiquitous networking is becoming a
reality wherein anyone will be able to obtain support using ICT, anytime and anywhere.
In addition to existing modes of communication that allow people to exchange
information with each other through audio, text, and multimedia, data obtained by
sensors and devices that are used in a variety of settings in society can now be
connected to information and communications networks due to advances in areas such
as the Internet of Things (1oT) and machine-to-machine technologies (M2M), making it
possible to gather vast amounts of data that can be used to help society to operate with
greater efficiency and convenience. We are coming closer to a future where everything
and every place in society will be connected by information and communications
networks, exchanging enormous amounts of data. There is a growing move toward
public availability and distribution for data that in the past has been accessible only
within specific companies, groups, industries, or government organizations. The
purpose of these specifications is to define the methodology as a means of facilitating
the construction of applications to register and use the various types of public data as
well as servers to aggregate the information. An open data distribution platform (ODDP)
(Fig. 1.1) is an environment of versatile technologies and operating rules for the
purpose of promoting distribution and collaboration in relation to the construction of
applications that register and use public data. This document specifies external
technical standards concerning the data model and application programming interface
(API) for constructing open data distribution platform systems.

Applications

Data
Sources

Environment Data from Sensors, Meters, RFIDs, etc. Files SNS Data

Fig. 1.1. Overview of the open data distribution platform (ODDP)

1.2. Scope of specification
The two areas below comprise the scope specified by this document.
1. Data standards (ODDP data standards)

The ODDP data standards are technical standards concerning the data model, data
representation formats, and vocabularies for construction of an open data
distribution platform that supports distribution and collaboration with regard to
public data across multiple industries.

Detailed information concerning these standards is presented in section 2 (ODDP
data standards).

2. API standards (ODDP API standards)

The ODDP API standards are technical standards concerning methods for the
interchange of public data across multiple industries, including methods for
operations such as retrieval, acquisition, and updating of data for open data
distribution platform systems.

Detailed information concerning these standards is presented in section 3 (Summary
of ODDP API) and section 4 (Details of ODDP API).

These specifications do not cover other matters than ODDP data standards and ODDP
API standards. For example, these specifications do not define standards concerning the
construction of databases or servers. Therefore, as shown in Fig. 1.2 (b), a system could
be constructed by overlaying the ODDP API on an interface for an existing data
processing system.

Applications

API 1
ODDP System
' DB
API

2 i

Data Sources

(a) Data sources as well as applications are

based on the ODDP API.

API

Applications

ODDP System
5

3
&

(Existing)

RS Data Management Servers

o
&

DB

Data Sources

(b) The ODDP API is used with an existing

data management system.

Fig. 1.2. Example configuration of open data distribution platform

1.3. Expressions concerning requirements, prohibitions, and permissions

Requirements, prohibitions, and permissions are expressed as follows in this document.

Requirements: "must,"” "should"
Prohibitions: "must not,
can"

Permissions: "may,

1.4. Specification policies

This document specifies the following policies for ODDP data standards and ODDP

API standards.

1. Compatibility with existing standards

Many different standards for the exchange of data among applications and servers
are already being used widely. These specifications were developed with
consideration for maximal utilization of and interoperability with existing

standards.

2. ldentification targets and methods

These specifications clarify the data and subject matter for identification and
indicate methods for their identification.
maximal utilization of existing identifiers, as in the preceding paragraph.

Identification methods are based on

Selective use and expansion of specifications

These specifications are designed to facilitate the construction of applications and
servers by indicating methods for the construction of applications to register and
use public data, as well as servers to aggregate information. Therefore,
consideration is given to flexible application of these specifications when
constructing applications and servers. In other words, selective use and expansion
of these specifications is allowed. Important points for consideration concerning
the selective use and expansion of these specifications will be discussed later.

Policies 1-3 are discussed below.

1.4.1.

1.4.1.1.

1.4.1.2.

1.4.1.3.

Compatibility and interoperability with existing standards

Several standards on data exchange between applications and servers have already
been established, including RDF [37], HTTP [47], XML [52], JSON [23], Turtle [46],
REST, Linked Data Platform [49], OAuth 2.0 [25], Dublin Core [22], Dol (Digital
Object Identifiers) [34], UUID (Universally Unique Identifier) [32], ISBN
(International Standard Book Number) [33], and ucode (Ubiquitous Code) [16].

These specifications give consideration to compatibility and interoperability with the
existing standards listed above. The details are indicated below.

The existing standards referenced herein are as of the time of publication of these
specifications. Future revisions in existing standards after the time of publication of
these specifications will be addressed according to the maintenance schedule of these

specifications. Therefore, there will be a time lag until future revisions in existing
standards can be reflected.

Data model and representation formats

The data handled by these specifications is based on the RDF data model [37]. RDF
is a widely used data model for descriptions of data and metadata.

The applicable representation formats are widely used formats based on the RDF
model, such as RDF/XML [1], N-Triples [29], Notation3 [4], Turtle [46], and JSON-
LD [51].

Communication and message formats and authentication methods

The communication and message formats and authentication methods are based on
existing standards such as HTTP [47], XML [52], JSON [23], and Auth 2.0 [25] .

Relation to existing APls

The following describes the relationship between existing APIs and the ODP API.

1. SPARQL [18, 28, 30]

The SPARQL-based commands (section 4.1) included in the ODDP API are
based on SPARQL 1.1.

2. Linked Data Platform [49]

Within the ODDP API, the Linked Data Platform is used for REST style APIs
that are input-output interfaces for commands to input or output data based on
the RDF model. Commands that are not specified by the Linked Data Platform
are specified independently by the ODDP API. For example, under geographical
data management commands, a command to search for location information
(section 4.3.1) is not specified by the Linked Data Platform, so it is provided
independently by these specifications. Meanwhile, since the response to this
command is data based on the RDF model, the rules of the Linked Data
Platform are followed with regard to the response format and the method for
specifying the data representation format.

1.4.1.4. Relevant vocabularies

The vocabularies for description of data based on the RDF model are widely used,
including Dublin Core [22], DCMI [21], FoaF [8], and DCAT [39]. The
vocabularies based on the ucode system include basic vocabulary [13] and spatial
metadata vocabulary [12], and these can also be used as vocabularies based on
ODDP data standards.

Please refer to Appendix C for a list of vocabularies for reference when describing
data under these specifications.

1.4.2. ldentification targets and methods
These specifications apply to the following data.

Files containing data such as documents, tables, images, video, and audio
Data created by interpreting the above and converting it into RDF format
Data measured by sensors

Data supplied by users of social networking services, etc.

Data based on other applications

Metadata concerning the data sets above

The data handled by these specifications should be uniquely identified to prevent
confusion with other data. For example, public data subject to these specifications can
indicate products in the distribution process in traceability applications, locations
identified with geospatial applications, and organizations that created the files, so
these also need to be identified. Therefore, unique identification is needed for things,
organizations, places, etc. that are indicated by public data.

Also, because these specifications follow the RDF data model, identifiers for data

handled by these specifications should be expressed in the URI (Uniform Resource
Identifier) format, which the specified method for representation of RDF resources.

-5-

1.4.3.

Concerning identifiers for data and its associated things, organizations, places, etc. in
fields where identifiers meeting the above conditions already exist, those existing
identifiers are used in accordance with the policies stated in the preceding section. For
example, these include Dol (Digital Object Identifiers) [34], UUID (Universally
Unique Identifier) [32], ISBN (International Standard Book Number) [33], and ucode
[16]. Meanwhile, ucode, a technical standard based on ITU-T H.642.1 [35], may also
be used in cases where there is no uniform method for identifying data or its
associated things, organizations, places, etc., or it is not possible to represent their
identifiers in the URI format.

Selective provision and expansion of functions

These specifications indicate an API consisting of eight functions, as well as the
elements needed for vocabulary definitions. Examples of vocabulary definitions are
given in an appendix. These are specified as matters needed for typical applications
that register and use public data.

Servers that comply with these specifications do not necessarily have to provide all of
the functions stated in this document. The functions needed for the envisioned
services may be selected. However, at least one of the functions stated in this
document should be provided.

It is also possible to independently expand or limit the functions to ensure usability
and improve performance, depending on the services. However, we recommend that
the input-output parameters of expanded API specifications should be as defined in
these specifications. Server providers who limit or add to the supplied functions
should provide specifications including the following information to application
developers.

e The referenced version of this document and the source where it was obtained.

e A list of the functions under these specifications which are provided by the server.

e The functions subject to limitations.
For example, " function is not provided,” "XML responses are not supported,”
or" ___ parameter cannot be used."”

e The expanded functions.
Concerning expanded API functions, we recommend stating the following items of
information, similar to the descriptions of API specifications in this document.
Function overview, method, URL path, constrained conditions, parameters,
required HTTP headers, status codes, response, and API usage examples

1.5 Terminology definitions

Table 1.5.1 shows definitions of terms used in this document. Two of these terms, RDF
and ucode, are also explained in appendices at the end of this document.

Table 1.5.1. Terminology definitions

Word or phrase

Meaning

Public data Data made available for use by many persons, companies, and organizations. In addition to
data in documentary or tabular form and data contained in databases, public data includes
real-time data obtained from network-connected devices such as sensors, as well as data
supplied by users of social networking services (SNS) and the like. Public data also includes
data where uses such as access, editing, and diversion are only permitted under certain
conditions.

Open data Public data that is supplied in a machine-readable data format under rules of use (licensing)
that allow secondary uses, including commercial uses.

Open data An environment of versatile technologies and operating rules, etc. that enables collaboration

distribution and sharing with regard to information, knowledge, and services, as a common basis for the

platform distribution and utilization of information without being limited to a certain entity, field, or
sector.

Metadata Highly abstract supplementary data that accompanies an item of data. For example,
metadata may include the time and place where some data was created, its author and title,
and comments.

Open data An actual implementation of an open data distribution platform, realized by a software system

distribution built on a cloud server by way of a wide-area digital network such as the Internet.

platform system

User program

A program that obtains and registers public data and is connected to an open data distribution
platform system.

ucode [16] A number identifying an object, place, or concept in units of 128-bit values.

ucode tag Media used to store ucodes.

RDF [37] Resource Description Framework, a framework for the description of a "web resource" (item
that is referred to). The RDF data model describes a resource in terms of three elements: a
subject, a predicate, and an object.

URI [3] Uniform Resource ldentifier, an identifier of a web resource. The subject and predicate of an
RDF statement are URIs. The object is either a URI or a string of characters.

Vocabulary A set of semantic definitions concerning the attributes and types to be understood in common
within a certain field in order to describe objects and data belonging to that field. A vocabulary
serves as a dictionary for use in describing public data.

Term A semantic definition concerning a specific attribute or type. Terms are the component
elements of a vocabulary.

REST Representational State Transfer. Here, this refers to a query method that uses the HTTP

commands GET, POST, PUT, and DELETE to perform the operations of acquiring, creating,
updating, and deleting data.

ucode issuing

Generating a ucode value that has never been used before.

1.6 References

(1) Dave Beckett. RDF/XML Syntax Specification. W3C Recommendation, 2004.
http://www.w3.0rg/TR/rdf-syntax-grammar/.

(2) Dave Beckett and Jeen Broekstra. SPARQL Query Results XML Format. W3C
Recommendation, 2008. http://www.w3.org/TR/rdf-spargl-XMLyres/.

(3) T. Berners-Lee, R. Fielding, and L.Masinter. Uniform Resource Identifier (URI):
General Syntax, 2005. RFC 3986, http://tools.ietf.org/html/rfc3986.

(4) Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF syntax.
W3C Team Submission, 2011. http://www.w3.0rg/TeamSubmission/n3/.

-7-

(5) Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Francois Yergeau,
and John Cowan. Extensible Markup Language (XML) 1.1. W3C Recommendation.
http://www.w3.0rg/TR/xml11/.

(6) Dan Brickley. Basic GEO (WGS84 lat/long) Vocabulary.
http://www.w3.0rg/2003/01/geo/.

(7) Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, 2004. http://www.w3.org/TR/rdf-schema/.

(8) Dan Brickley and Libby Miller. FOAF Vocabulary Specification.
http://smlns.com/foaf/spec/.

(9) Howard Bulter, Martin Daly, Allan Doyle, Sean Gillies, Tim Schaub, and
Christopher Schmidt. The GeoJSON Format Specification, 2008.
http://www.geojson.org/geojson-spec.html.

(10) Ubiquitous ID Center. UCR — Spatial Accessibility, 2006. UID-00033,
http://www.uidcenter.org/ja/spec#UID-00033.

(11) Ubiquitous ID Center. UCR — Spatial Network, 2006. UID-00032,
http://www.uidcenter.org/ja/spec#U1D-00032.

(12) Ubiquitous ID Center. UCR — Spatial Metadata, 2006. UID-00031,
http://www.uidcenter.org/ja/spec#UID-00031.

(13) Ubiquitous ID Center. UCR — Basic Vocabulary, 2006. UID-00030,
http://www.uidcenter.org/ja/spec#U1D-00030.

(14) Ubiquitous ID Center. ucode ucode Resolution Gateway, 2008. UID-00007,
http://www.uidcenter.org/ja/spec#UID-00007.

(15) Ubiquitous ID Center. Simplified ucode Resolution Protocol, 2008. UID-00005,
http://www.uidcenter.org/ja/spec#UI1D-00005.

(16) Ubiquitous ID Center. ucode: Ubiquitous Code: ucode, 2009. UID-00010,
http://www.uidcenter.org/ja/spec#U1D-00010.

(17) Ubiquitous ID Center. ucR format: ucode ucR format: ucode Relation Format,
2012. UID-00026, http://www.uidcenter.org/ja/spec#UID-00026.

(18) Kendall Grant Clark, Lee Feigenbaum, , and Elias Torres. SPARQL Protocol for
RDF. W3C Working Draft, 2008. http://www.w3.org/TR/rdf-spargl-protocol/.

(19) Open Geospatial Consortium. Consortium. OpenGIS R®Simple Features

Specification For SQL Revision 1.1, 1999. OGC 99-049,
http://www.opengeospatial.org/standards/sfs.

-8-

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

Dublin Core. DCMI Metadata Terms.
http://dublincore.org/documents/2012/06/14/dcmi-terms/.

Dublin Core. DCMI Metadata Terms.
http://dublincore.org/documents/2012/06/14/dcmi-terms.

Dublin Core. Dublin Core Metadata element Set, Version 1.1. http://dublincore.
org/documents/dces/.

D. Crockford. The application/json Media Type for JavaScript Object Notation
(JSON), 2006. RFC 4267, http://tools.ietf.org/html/rfc4267.

Richard Cyganiak and Dave Reynolds. The RDF Data Cube Vocabulary. W3C
Recommendation, 2014. http://www.w3.0rg/TR/vocab-data-cube/.

Ed D. Hardt. The OAuth 2.0 Authorization Framework, 2012. RFC 6749,
http://tools.ietf.org/html/rfc6749.

lan Davis and Thomas Steiner. RDF 1.1 JSON Alternate Serialization (RDF/JSON).
W3C Working Group Note, 2013. http://www.w3.org/TR/rdf-json/.

Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and Elias Torres.
SPARQL 1.1 Protocol. W3C Working Draft, 2012.
http://www.w3.0rg/TR/spargl11-protocol.

Paul Gearon, Alexandre Passant, and Axel Polleres. SPARQL 1.1 Update. W3C
Working Draft, 2012. http://www.w3.org/TR/sparql11-update.

Jan Grant and Dave Beckett. RDF Test Cases. W3C Recommendation, 2004.
http://lwww.w3.0rg/TR/rdf-testcases/#ntriples.

Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C Working
Draft, 2012. http://www.w3.0rg/TR/spargl11-query.

John R. Herring. OpenGIS ® Implementation Standard for Geographic

information - Simple feature access. Part 1: Common architecture, 2011. OGC 06-
103r4, http://www.opengeospatial.org/standards/sfa.

International Organization for Standardization. Open Systems Interconnection -
Remote Procedure Call (RPC), 1996. ISO/IEC 11578.

International Organization for Standardization. International standard book note,
2005. 1SO 2108.

International Organization for Standardization. Digital object identifier system,
2012. ISO 26324,

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

International Telocommunication Union. Multimedia information access triggered
by tag-based identification - Identification scheme, 2012. Recommendation
H.642.1, http://www.itu.int/rec/T-REC-H.642.1/en.

Chiaki Ishikawa. Namespace for ucode, 2012. RFC 6558,
http://tools.ietf.org/html/rfc6588.

Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation, 2004.
http://www.w3.0rg/TR/rdf-concepts/.

P. Leach, M. Mealling, and R. Salz. A Universally Unique Identifier (UUID) URN
Namespace, 2005. RFC 4412, http://tools.ietf.org/html/rfc4122.

Fadi Maali, John Erickson, and Phil Archer. Data Catalog Vocabulary (DCAT).
W3C Recommendation, 2014. http://www.w3.0rg/TR/vocab-dcat/.

Alistair Miles and Sean Bechhofer. SKOS Simple Knowledge Organization System
Reference. W3C Recommendation, 2009. http://www.w3.0rg/TR/skos-reference/.

Feras Moussa. Streams API. W3C Editor's Draft, 2012,
http://dvcs.w3.org/hg/streams-api/raw-file/tip/Overview.htm.

M. Nottingham. Web Linking, 2010. RFC 5988, http://tools.ietf.org/html/rfc5988.

Chimezie Ogbuji. SPARQL 1.1 Graph Store HTTP Protocol. W3C Working Draft,
2012. http://www.w3.0rg/TR/spargl11-http-rdf-update/.

Matthew Perry and John Herring. OGC GeoSPARQL - A Geographic Query
Language for RDF Data. Open Geospatial Consortium, 2012. OGC 11-052r4,
http://www.opengeospatial.org/standards/geosparql.

Clemens Portele. ORC ®Geography Markup Lamguage (GML), 2012. OGC 10-
129r1, 1SO 19136, http://www.opengeospatial.org/standards/gml.

Eric Prud’hommeaux, Gavin Carothers, and Lex Machina. RDF 1.1 Turtle. W3C
Recommendation, 2014. http://www.w3.org/TR/turtle/.

R.Fielding, T. Berners-Lee, and at. el. Hypertext Transfer Protocol - HTTP/1.1,
1999. RFC 2616, http://tools.ietf.org/html/rfc2616.

Andy Seaborne. SPARQL 1.1 Query Results JSON Format. W3C Working Draft,
2011. http://www.w3.0rg/TR/spargl11-results-json/.

Steve Speicher, John Arwe, and Ashok Malhotra. Linked Data Platform 1.0. W3C
Working Draft, 2014. http://www.w3.org/TR/ldp/.

(50) Steve Speicher, John Arwe, and Ashok Malhotra. Linked Data Platform Paging 1.0.

Wa3C Editor's Draft, 2014. http://www.w3.0rg/2012/ldp/hg/ldp-paging.html.

-10 -

(51) Manu Sporny, Gregg Kellogg, and Markus Lanthaler. JSON-LD 1.0: A JSON-
based Serialization for Linked Data. W3C Recommendation, 2014.
http://www.w3.0rg/TR/json-Id/.

(52) W3C. XML Schema. http://www.w3.org/XML/Schema.

(53) Ministry of Health, Labor and Welfare. The Japanese Pharmacopoeia, Sixteenth
Edition, 2011. http://jpdb.nihs.go.jp/jp16/Y AKKYOKUHOU16.pdf.

1.7. Revision history

Table 1.7.1. Revision history

Revision date Version Changes
3/25/2013 1.0 e Created initial version.
9/10/2013 11 e Revised introduction to clarify the purpose and scope of these

specifications.

e Specified the RDF/XML or RDF/JSON standards for notification query
formats.

e Added explanations to APl usage examples.
e Added explanations of RDF and ucode as appendices.
e Corrected inconsistencies in notation and layout.

6/XX/2014 2.0 draft ¢ Revised security management commands.
e Added function of specifying null value to request automatic ucode issuing.

e Eliminated APIs with very low frequency of use (triple operation API of
SPARQL, map operation API, and user group operation API)

¢ Changed the JSON response format of REST-based API from RDF/JSON
to JSON-LD.

e Changed RDF data exchanging API parameters and search API responses
for consistency with the rules of Linked Data Platform [49].

e Moved portions concerning specific vocabularies to appendices for
improved maintainability.

e Added vocabulary for access control description and pharmaceutical
vocabulary.

o Revised geospatial object vocabulary.

-11 -

2.1.

2.2.

2.3.

ODDP data standards

The data standards for open data distribution platform systems (hereinafter "ODDP data
standards™) are common standards concerning the data model, data representation
formats, and vocabularies for distribution and linking of public data across multiple
industries using open data distribution platform systems. The ODDP data standards cover
the areas below.

Data model

A data model is a model for simple and expandable descriptions of public data. The
data model under these specifications is as follows.

e The model used is RDF [37].
e Ucode [16] is used for identifiers of public data and the objects, organizations,
places, etc. referred to by the data.

— Several identifier systems are in place at present, including ISBN, ISSN, and
Digital Object Identifiers (DOI). In cases where those can be represented using
Uniform Resource Identifiers (URI), that system is used.

— To maintain consistency with the RDF model, ucode is represented in the URN
format [36].

Data representation formats

A data representation format is a machine-readable format for the representation of
public data based on the RDF model. The data representation formats under these
specifications are as follows.

RDF/XML [1]
Turtle RDF-turtle
N-Triples [29]
Notation3 [4]
JSON-LD [51]

Vocabulary

A vocabulary is information corresponding to a dictionary for the sake of a common
understanding of the meaning of data. The individual elements comprising a vocabulary
are called "terms.” A term that is generally used as a predicate is called a "property,”
while a term that is generally used as an object is called a “class" if it represents a group
of referents, or an "instance™ if it represents a member of a class.

Individual identification of vocabulary items is made possible by assigning ucodes.

Vocabulary items can be added as needed, and the relationships among them can be
described.

The metadata needed for vocabulary definitions is specified by DCMI Metadata Terms

[20]. In these specifications, we recommend including the following metadata in
vocabulary definitions, based on that resource.

-12 -

e Strongly recommended metadata

- Name: A token appended to the URI of a DCMI namespace to create the URI of
the term.

- Label: The human-readable label assigned to the term.

- URI: The Uniform Resource Identifier used to uniquely identify a term.

- Definition: A statement that represents the concept and essential nature of the
term.

- Type of Term: The type of term as described in the DCMI Abstract Model

e Recommended metadata

- Comment: Additional information about the term or its application.

- See: Authoritative documentation related to the term.

- References: A resource referenced in the Definition or Comment.

- Refines: A Property of which the described term is a Sub-Property.

- Broader Than: A Class of which the described term is a Super-Class.

- Narrower Than: A Class of which the described term is a Sub-Class.

- Has Domain: A Class of which a resource described by the term is an Instance.

- Has Range: A Class of which a value described by the term is an Instance.

- Member Of: An enumerated set of resources (Vocabulary Encoding Scheme) of
which the term is a Member.

- Instance Of: A Class of which the described term is an instance.

- Version: A specific historical description of a term.

- Equivalent Property: A Property to which the described term is equivalent

A list of vocabulary for reference when describing data under these specifications is
provided in Appendix C.

-13-

3. Overview of ODDP API

The API for open data distribution platform systems (hereinafter "ODDP API") consists
of the following eight functions. These are shown in Fig. 3.1. The first function consists
of commands based on the SPARQL [18, 28, 30] specifications, and the other seven
functions are commands based on REST.

1.

SPARQL-based commands
Commands based on the SPARQL protocol [18, 28, 30].

Traceability and real-time data management commands

Commands for implementation of public data operations that involve time-series
data processing, such as traceability information, event logs, and real-time data, by
user programs.

Geographic data management commands
Commands for implementation of public data operations that involve geographic
data processing by user programs.

Security management commands
Commands for implementation of security operations, such as user management and
access control, by user programs.

Vocabulary management commands
Commands for implementation of vocabulary management by user programs.

Notification management commands

Commands for user programs to use functions that provide notifications to the user
programs from ODDP systems in response to registration and updating of public
data.

Triple management commands

Commands for simplified operations with RDF triples by user programs, for the sake
of efficiency in user programs based on small devices such as sensors and smart
meters.

Identification resolution commands
Commands for user programs to use functions to resolve the storage location of
public data from ucode by user programs.

Below, this chapter discusses common specifications related to the ODDP API.

-14 -

User Programs

el el el ‘[-------------------- ODDP System

1dentification |[o, ooy pocon | [Traceabilin Security Notification Triple eographical Datd [Vocabulary
FResolution G ReatimeData Ll M L Man W
Command Command Command Command Command Command Command

‘ Data Management Intarface

Registration Data Upload Registration
Smart Meters,
Users Sensors, etc. Users

Fig. 3.1. Configuration of open data distribution platform systems
3.1. rotocol
The ODDP API is defined under the HTTP/1.1 [47] protocol.
3.2. unctions corresponding to HTTP methods

In general, the correspondence between functions and HTTP method names in the
ODDP APl is basically according to RESTful APIs, as indicated in Table 3.2.1.

Table 3.2.1. elationship between functions and HTTP methods

HTTP method Function
GET Retrieval or searching
POST New object registration
PUT Updating data
DELETE Deletion of data

3.3. TTP status codes

Table 3.3.1 shows the status codes returned by an open data distribution platform
system using the ODDP API.

-15 -

Table 3.3.1. tatus codes of ODDP API

Status code Meaning

200 OK Completed successfully.

201 Created A new resource has been created successfully.

204 No Content Completed successfully (if there is no response message).

400 Bad Request Parameter error.

401 Not Authenticated Unauthenticated status, or authentication failed.

403 Forbidden Authorization error.

404 Not Found The requested resource does not exist, or the function is not
defined in these specifications.

409 Conflict Registration failed because of an overlap with data that has
already been registered.

413 Request Entity Too Large The request exceeds the limits of the system.

500 Internal Error An internal error of the system.

501 Not Implemented The requested function is not supported. (This code is
returned if a requested command is included in these
specifications but has not been implemented.)

3.4. Request and response formats

The following matters are specified with regard to messages exchanged between user
programs and open data distribution platform systems.

Format of message body and method of specification
Request success or failure and content of message body

Response paging method
Rules on URI expressions

Matters based on SPARQL standards should conform to the SPARQL 1.1 standards
[30], and RDF data sending and receiving and response paging methods should
conform to Linked Data Platform [49], Linked Data Platform Paging [50], etc.

The details are discussed below.

3.4.1. Format of message body

The data format of the message body portion of a request and response should be as
follows.

» When sending and receiving RDF data
The format is Turtle [46], RDF/ XML [1], JSON-LD [51], N-Triples [29], or
Notation3 [46].

» QOtherwise
The format is JSON [23] or XML [5].

-16 -

3.4.2.

To identify the RDF data format when a user program or open data distribution
platform system sends a query or response with a message body consisting of RDF
data, the HTTP header should include a Content-Type header having values as shown
in Table 3.4.1.

The methods for specifying the data format for the response that the user program
obtains from the open data distribution platform system are as follows.

» When SPARQL-based commands are used (section 4.1)
Specified under section 4.1 (SPARQL-based commands).

» When RDF data format is specified
Any of the following. We recommend the first option. The default response format
is Turtle.

— Include an Accept header having any of the values shown in Table 3.4.1 in the
HTTP header.

— Add .json or .xml at the end of the requested URL. Adding .json means that the
JSON-LD format is specified, and adding .xml means that the RDF/XML
format is specified.

— Add format=json or format=xml to the requested URL query string. Adding
format=json means that the JSON-LD format is specified, and adding
format=xml means that the RDF/XML format is specified.

+ Otherwise
Any of the following. We recommend the first option. The default response format
is JSON.

— Add .json or .xml at the end of the requested URL.
— Add format=json or format=xml to the requested URL query string.

Table 3.4.1. Header values indicating RDF graph expression format

Header value Explanation
application/rdf + xml RDF/XML [1]
application/json JSON-LD [51]
text/plain N-Triples [29]
text/rdf + n3 Notation3 [46]
text/turtle Turtle

When sending structured data that is not in RDF data format by the POST or PUT
method, the user program should use the same format as the requested response
format. For example, when requesting a response in XML format, the structured data
should also be written in XML.

Request success or failure and message body content

When the open data distribution platform system has processed a received request
correctly, the status code returned is 200, 201, or 204. If there is a response message,

-17 -

3.4.3.

3.4.4.

it is contained in the message body as a string of characters in JSON or XML. If it is
provided in XML format, the root element of the data is <api_response>.

When the open data distribution platform system has been unable to process a
received request correctly, the returned status code is not of the 200 series. In this case,
the message body contains a message having the parameter shown in Table 3.4.2. If it
is provided in XML format, the root element of the error message is <error_response>.

Table 3.4.2. Error message parameters

Parameter name Format Parameter value

msg xsd:string Error message

Rules on response paging

Upon receiving a request for a search, the open data distribution platform system can
divide the response (paging) according to the system's processing capabilities.
However, under the Linked Data Platform Paging [50] conventions, the HTTP header
should include a Link header and state the URL of the divided response destination.

The Link header should have the following values. Parameter <P> is the URL of the
divided response destination, and <r> has one of the values shown in Table 3.4.3.

Link <P >;rel='<r >'

Table 3.4.3. Parameters of error messages for paging

Value of <r> Meaning Required?
first First page of paging
next Next page of paging Yes

prev

Previous page of paging

last

Last page of paging

Rules on URI notation
The following applies to URI notation used in requests and responses.

e In places where a format based on standards such as SPARQL 1.1, RDF/XML, or
JSON-LD is specified, the URI notation method required under those standards
should be used.

¢ In other places, a URI should be enclosed in angle brackets (< >). However, except
in the case of SPARQL-based commands (section 4.1), the following alternate
notation may be used to avoid URL encoding if the request includes a well-known
URI; and in such cases, the URI in alternate notation must not be enclosed in angle
brackets.

-18-

— If the URI is ucode URN, a string of characters with the added prefix "ucode "
may be used as alternate notation for the ucode value. For example, instead of
"urn:ucode:_00001C00000000000001000000010000", the notation
"ucode_00001C00000000000001000000010000" may be used.

— If the URI is vocabulary indicated in section 2.3 (Vocabulary), a string of
characters connected with an underscore (_) may be written in place of the
local name and Qname indicated in the alias URI space. For example, instead of
"http://purl.org/dc/elements/1.1/title", the notation "dc_title" may be used.

3.5. Data formats

In these specifications, the data formats listed in Table 3.5.1 are used in addition to the
data formats provided in XML Schema [52].

Table 3.5.1. Data formats defined in these specifications

Name of format Explanation
hash hash (associative array)
RDF RDF/XML or JSON-LD
<format name> [] <format name> list (array)

When specifying a list with parameter values of the GET method, the items should be
separated by commas.

In XML representation of hash data, the key is the tag name, and the value is the tag
value. List values for a certain key are represented by repetition of the tag name
indicating that key. For example, the following are representations of data of the same
structure in XML and JSON.

XML representation

~
<params> -~ JSON representation N
<keyl>valuel</keyl>
<key2>value2</key2> ("params”: [
</params> {"keyl": "valuel", "key2": "yvalue2"},
{"keyl": "value3", "key2": "valued"}
<params>
<keyl>value3</keyl>]
<key2>valued</key2> ¥
</parans> _ Y,
- J

3.6. RDF expressions requesting automatic ucode issuing
In the commands of sections 4.3.2 (4.3.2 (Registering new place information), 4.4.2

(Registering new roles), 4.6.2 (Creating new terms), and 4.7.2 (Creating new public
data), a request for automatic ucode issuing for RDF/ XML or JSON-LD resources

-19-

3.7.

3.8.

contained in the message body can be sent to the open data distribution platform system
if the following URI or null value is specified (empty string if RDF/XML, or null if
JSON-LD). Note that <val> is an alphanumeric string that begins with alphabetic
characters.

urn:ucode:_?<val>

The open data distribution platform system performs the following actions upon
receiving this request.

+ If a URI of the form urn:ucode:_?<val> is specified
A ucode is issued for each of the specified variables, and RDF data is registered with
the corresponding portion converted into URI notation of the ucode. The result is a
hash value having the variable name specified by <val> as key and the
corresponding ucode as its value.

 If anull value is specified
A ucode of null value quantity is issued, and RDF data is registered with the
corresponding portion converted into URI notation of the ucode. The result is the
issued ucode array.

It is not permissible to mix a URI of the form urn:ucode:_?<val> and a null value
within the same command. The open data distribution platform system cannot accept a
request that mixes both of these, and status code 400 is returned.

Streams API

When the parameter "stream" is specified in search and view commands under section
4.2 (Traceability and real-time data commands) or section 4.7 (Triple management
commands), the connection is continued and results are returned as each value is
updated, based on Streams API [41]. If the value of the stream parameter is O, the
maximum allowed time of the server is specified. The maximum time for continuing
the connection under Streams API is implementation-dependent.

Other common provisions
In addition to the above, these specifications include the following common provisions.

e The method for approval of applications is based on OAuth 2.0 [25].

e Authentication is performed using an authentication key issued under a separately
specified method.

e The necessary encoding for conventions such as HTTP and URL is performed as
needed.

e If data including multi-byte characters is returned in JSON format, this should be
encoded according to JSON specifications.

-20 -

4. Details of ODDP API

This chapter provides details of the ODDP API.

4.1. SPARQL-based commands

SPARQL-based commands provide

the functions of registering, updating, deleting,

viewing, and searching for public data, based on the SPARQL 1.1. protocol [18, [28],
[30]. These commands are listed in Table 4.1.1. Details concerning each command are

provided below.

Table 4.1.1. List of SPARQL-based commands

URL path HTTP method Meaning
[apilvl/spargl GET Issuing a query under SPARQL 1.1
[apilvl/spargl POST Issuing a query under SPARQL 1.1
lapi/vl/rdf-graph-store GET Viewing an RDF graph
/api/vl/rdf-graph-store POST Adding an RDF graph
[apilvl/rdf-graph-store PUT Updating an RDF graph
[apilvl/rdf-graph-store DELETE Deleting an RDF graph

An APl where the URL path is /api/vl/rdf-graph-store is an API according to the
SPARQL 1.1 Graph Store HTTP Protocol [43]. However, because this type of API
supports only operations in RDF graph units, APIs that can operate in units of RDF
data triples (or partial graphs that are sets of triples) are added. The URL path of the

latter is /api/v1/rawdata.

When using named graphs, the RDF graphs are identified using the API graph

parameters stated in this section.

When not using named graphs, either graph

parameters are not used, or default parameters are used.

Ucodes cannot be automatically issued when using APIs under this section.

4.1.1. Issuing queries based on SPARQL 1.1: GET method

Functional summary:

The HTTP GET method is used to issue queries based on SPARQL 1.1.

Method:
GET

URL path:
lapi/vl/spargl

Restrictions:
None. Anyone can make a request.

Parameters:
As shown in Table 4.1.2.

-21 -

Table 4.1.2. Parameters for issuing queries based on SPARQL 1.1 (GET method)

Parameter name Format Explanation

query xsd:string URL encoded SPARQL query

Required HTTP headers:
The requested response format should be set as Accept. The parameters that may be
specified when issuing SELECT operations under SPARQL 1.1 are stated in Table 4.1.3;
the parameters that may be specified when issuing CONSTRUCT or DESCRIBE
operations are stated in Table 4.1.4; and the parameters that may be specified when issuing
ASK operations are stated in Table 4.1.5.

Table 4.1.3. Accept header values specifying response format for SELECT operations

Accept header value Explanation

appliction/sgargl-results+xml Response based on SPARQL Query Results XML Format [2]

application/sparql-results+json Response based on SPARQL Query Results JSON Format [48]

Status codes:
As shown in Table 4.1.6.

Table 4.1.4. Accept header values specifying RDF graph format of response

Accept header value Explanation
application/rdf+xml RDF/XML [1]
text/plain N-Triples [29]
text/rdf+n3 Notation3 [4]
text/turtle Turtle [46]

Table 4.1.5. Accept header values specifying binary value format of response

Accept header value Explanation
application/spargl-results+xml Response based on SPARQL Query Results XML
Format [2]
text/boolean Text expression (true/false)

Responses:
The responses are as follows.

* Responses to SELECT operations are either of the following, based on the Accept
header value.

— Response based on SPARQL Query Results JSON Format [48]
— Response based on SPARQL Query Results XML Format [2]

» Responses to CONSTRUCT and DESCRIBE operations are RDF graph data. The
format is as specified by the Accept header value.

-22 -

» Responses to ASK operations are either of the following, based on the Accept header
value.

— Response based on SPARQL Query Results XML Format [2]
— Text expression, true or false

Table 4.1.6. Status codes when issuing queries based on SPARQL 1.1 (GET method)

Status code Meaning
200 OK Completed successfully.
400 Bad Request Incorrect query.
500 Internal Error An error occurred within the ODDP system.

API usage example
The following is an example of a request issuing a SPARQL query to obtain the identifier
of a book along with its author's name, and the response. The GET method query
parameter value is URL encoding of the following SPARQL query.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlIns.com/foaf/0.1/>
SELECT ?book ?name WHERE {

?book dc:creator ?who .

?who foaf:name ?name . }

' Request N
GET /api/vl/sparql/7query=PREFIX}20dc),3A%20%3chttp)3A%2F 2Fpurl),2Eorgi2Fde
#2Felements¥2F 1, 2E1Y2FY3EL 0D}, 0 APREFIX),20f oaf 43A%20%3chttpi3AY2F) 2FxmlnsY,2E
com}2Ffoaf 2F0%2E1}2FL2E/, 0D, 0ASELECT20%3Fbook},20%3Fname . 20WHERE,20% 7B 0D
hOAY20%20%3Fbook20dc 3 Acreator,20%3Fwho .20 2EL0DY0AY 20207 3Fwho,20%20f oaf
%3Aname%20%20%3Fname20%2E}20%7D

Host: www.example.org

Accept: applicaticn/spargql-results+xml

-23-

Response

r/_
HTTP/1.1 200 OK

Content-Length: xxx
Content-Type: application/spargl-results+xml

<?7xml version="1.0"7>

<gpargl xmlns="http://www.w3.org/20056/sparql-results#">

<head>
<variable name="book"/>
<variable name="name"/>
</head>
<results>
<result>
<binding name="book">
<uri>http://www.example.org/book/bookb</uri>
</binding>
<binding name="name'">
<literal>Alice</literal>
</binding>
</result>

</sparql>

4.1.2. lIssuing queries based on SPARQL 1.1: POST method

Functional summary:
The HTTP POST method is used to issue queries under SPARQL 1.1.

Method:
POST

URL path:
lapilvl/spargl

Restrictions:
None. Anyone can make a request.

Parameters:
The parameters shown in Table 4.1.7 are included in the message body.

-24 -

Table 4.1.7. Parameters for issuing queries based on SPARQL 1.1 (POST method)

Parameter name Format Explanation

query xsd:string URL encoded SPARQL query

Required HTTP headers:
The requested response format should be specified in the Accept header. The method is
the same as stated in section 4.1.1 (Issuing queries based on SPARQL 1.1: GET method).
(See Tables 4.1.3,4.1.4, and 4.1.5.)

Status codes:
As shown in Table 4.1.8.

Table 4.1.8. Status codes when issuing queries based on SPARQL 1.1 (POST method)

Status code Meaning
200 OK Completed successfully.
400 Bad Request Incorrect query.
500 Internal Error An error occurred within the ODDP system.
Responses:

The responses are as follows.

* Responses to SELECT operations are either of the following, based on the Accept
header value.

— Response based on SPARQL Query Results JSON Format [48]
— Response based on SPARQL Query Results XML Format [2]

» Responses to CONSTRUCT and DESCRIBE operations are RDF graph data. The
format is as specified by the Accept header value.

* Responses to ASK operations are either of the following, based on the Accept header
value.

— Response based on SPARQL Query Results XML Format [2]
— Text expression, true or false

API usage example
The following is an example of a request issuing a SPARQL query to obtain the identifier
of a book along with its author's name, and the response. Here, URL encoding of the
request is omitted for the sake of readability.

-25.-

~ Request
POST /api/vl/sparql HTTP/1.1

Host: www.example.org
Accept: application/sparql-results+xml
Content-Type: application/x-www-form-urlencoded

Content-Length: xxx

query=PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT 7book 7name WHERE {

Tbook dc:creator ¥who

?who foaf:name 7name . }

-

s Response
HTTF/1.1 200 OK

Content-Length: xxx

Content-Type: application/sparql-results+xml

<7xml versicon="1.0"7>

<spargl zmlns="http://www.w3.org/2005/sparql-results#">

<head>
<variable name="book"/>
<variable name="name'/>
</head>
<results>
<result>
<binding name="book'>
<urirhttp://www.example.org/book/books</uri>
</binding>
<binding name="name'>
<literal>Alice</literal>
</binding>
</result>

</results>

</sparql>

4.1.3. Viewing RDF graphs

Functional summary:
Viewing of RDF graphs.

-26 -

Method:
GET

URL paths:
[api/vl/rdf-graph-store?graph=<graph>
[api/v1/rdf-graph-store?default

Restrictions:
None. Anyone can make a request.

Parameters:
The parameters are as shown in Table 4.1.9.

Table 4.1.9. RDF graph viewing parameters

Parameter Default value Explanation
name
graph (?default URI identifying the RDF graph to be viewed. Based on the rules of [43], the
specified) URI is not enclosed in angle brackets.

Required HTTP headers:
The response format should be specified in the Accept header. The method is the same as
CONSTRUCT operations under section 4.1.1 (Issuing queries based on SPARQL 1.1:
GET method). (See Table 4.1.4.)

Status codes:
As shown in Table 4.1.10.

Responses:
Representation of the RDF graph encoded in the format specified in the Accept header.

Table 4.1.10. Status codes when viewing RDF graphs

Status code Meaning
200 OK Completed successfully.
400 Bad Request Incorrect parameter values.
500 Internal Error An error occurred within the ODDP system.

API usage example
The following is an example of a request to view a currently registered RDF graph, along
with the response.

-27-

Request
Ve q

GET /api/vl/rdf-graph-store?default HTTP/1.1
Host: www.example.org
Accept: application/rdf+xml
¢/~ Response ~
HTTP/1.1 200 OK
Content-Length: xxx
Connection: close
Content-Type: application/rdf+xml; charset=utf-8
<?xml version="1.0"7>
<rdf :RDF
xmlns:rdf="http://uww.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns :books="http://www.exanple.org/book/"
xmlns:de="http://purl.org/dc/elements/1.1/" >
<rdf :Description rdf:about="http://www.example.org/book/books">
<dc:title>Example Book #6</dc:title>
</rdf:Description>
</rdf :RDF>
/

4.1.4. Adding RDF graphs

Functional summary:
Adding of RDF graphs.

Method:
POST

URL paths:
[api/vl/rdf-graph-store?graph=<graph>
lapi/vl/rdf-graph-store?default

Restrictions:
Users having update authority for any RDF graph can make a request.

Parameters:

The parameters shown in Table 4.1.11 are given as POST method query strings. The RDF
graph to be added is contained in the message body.

-28-

Table 4.1.11. RDF graph viewing parameters

Parameter Default value Explanation
name
graph (?default URI identifying the RDF graph to be added. Based on the rules of [43], the
specified) URI is not enclosed in angle brackets.

Required HTTP headers:
The format of the RDF graph to be added should be specified in the Content-type header.
For the parameter values that can be specified and their meanings, refer to Table 4.1.4 in
section 4.1.1 (Issuing queries based on SPARQL 1.1: GET method).

Status codes:
As shown in Table 4.1.12.

Responses:
If successful, the response body is empty.

Table 4.1.12. Status codes when adding RDF graphs

Status code Meaning
204 No Content Completed successfully.
400 Bad Request Incorrect parameter values.
500 Internal Error An error occurred within the ODDP system.

API usage example
The following is an example of a request to add an RDF graph, where Example Book #6 is
the name (dc:title) of a book indicated by the URI http://www.example.org/book/book®,
and the response.

Request
a4 N

POST /api/vl/rdf-graph-store?default HTTP/1.1
Host: www.example.org

Accept: application/rdf+xml

<?7xml versien="1.0"7>
<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:books="http://www.example.org/book/"
xmlns:de="http://purl.org/dc/elements/1.1/" >
<rdf:Description rdf:about="http://www.example.org/book/book6">
<dc:title>Example Book #6</dc:title>
</rdf :Description>
</rdf :RDF>

e Response
\LHTTPji’i 204 No Content

-29.-

-

4.1.5. Updating RDF graphs

Functional summary:
Updating of RDF graphs. The RDF graph that is registered after completion of the request
operation is the graph specified by the request. RDF graphs that are not contained in the
request are deleted.

Method:
PUT

URL paths:
lapi/v1/rdf-graph-store?graph=<graph>
lapi/vl/rdf-graph-store?default

Restrictions:
Users having update authority for any RDF graph can make a request.

Parameters:
The parameters shown in Table 4.1.13 are given as PUT method query strings. The RDF
graph to be updated is contained in the message body.

Table 4.1.13. RDF graph viewing parameters

Parameter Default value Explanation
name
graph (?default URI identifying the RDF graph to be updated. Based on the rules of [43], the
specified) URI is not enclosed in angle brackets.

Required HTTP headers:
The format of the RDF graph to be updated is specified in the Content-type header. For the
parameter values that can be specified and their meanings, refer to Table 4.1.4 in section
4.1.1 (Issuing queries based on SPARQL 1.1: GET method).

Status codes:
As shown in Table 4.1.14.

Responses:
If successful, the response body is empty.

Table 4.1.14. Status codes when updating RDF graphs

Status code Meaning
204 No Content Completed successfully.
400 Bad Request Incorrect parameter values.
500 Internal Error An error occurred within the ODDP system.

API usage example
The following is an example of a request to update the content of an RDF graph with the
information that Example Book #6 is the name (dc:title) of a book indicated by the URI

-30 -

http://lwww.example.org/book/book6, and the response. Any other information in that
RDF graph is deleted.

Request
~ q

PUT /api/vl/rdf-graph-store?default HTTP/1.1
Host: www.example.org
Accept: application/rdf+xml

<7xml version="1.0"7>
<rdf :RDF
xmlns :rdf="http://uww.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns :books="http://www.example.org/book/"
xmlns:de="http://purl.org/dc/elements/1.1/" >
<rdf:Description rdf:about="http://www.example.org/book/books">
<dc:title>Example Book #6</dc:title>
</rdf:Description>
</rdf:RDF>

Response
HTTP/1.1 204 No Content

4.1.6. Deleting RDF graphs

Functional summary:

Deletion of RDF graphs. After implementation of this type of request, the RDF graph is
empty.

Method:
DELETE

URL paths:
[api/vl/rdf-graph-store?graph=<graph>
[api/vl/rdf-graph-store?default

Restrictions:
Users having update authority for any RDF graph can make a request.

Parameters:
The parameters shown in Table 4.1.15 are given as query strings.

-31-

Table 4.1.15. RDF graph deletion parameters

Parameter Default value Explanation
name
graph (?default URI identifying the RDF graph to be deleted. Based on the rules of [43], the
specified) URI is not enclosed in angle brackets.

Required HTTP headers:
None.

Status codes:
As shown in Table 4.1.16.

Table 4.1.16. Status codes when deleting RDF graphs

Status code Meaning
204 No Content Completed successfully.
400 Bad Request Incorrect parameter values.
500 Internal Error An error occurred within the ODDP system.
Responses:

If successful, the response body is empty.

API usage example

The following is an example of a request to completely delete an RDF graph, along with
the response.

Request
(DE.LETE /api/v1/rdf-graph-store?default HITP/1.1 j

Response
[HTTP/i.l 204 No Content)

4.2. Traceability and real-time data management commands

Traceability and real-time data management commands provide functions needed for
event management, such as traceability.

The matters subject to traceability management are called "events,” and they are
basically identified with ucodes. Event types such as split, integrated, and transferred
events are identified by assigning ucodes as indicated in section C.18 (Event
vocabulary). Similarly, attributes related to events are managed using the vocabulary
indicated in section C.18 (Event vocabulary).

These commands are listed in Table 4.2.1. Details concerning each command are
provided below.

-32-

Table 4.2.1. List of traceability and real-time data management commands

URL path HTTP method Meaning
[apilvl/events GET Searching for an event
[apilvl/events POST Registering an event
/apilvl/events/<targets> GET Viewing an event
/apilvl/events/<targets>/<properties> GET Viewing an event
/apilvl/events/<target> PUT Updating an event
lapi/lvl/events/<target>/<property> PUt Updating an event
/apilvl/events/<target> DELETE Deleting an event
lapi/lvl/events/<target>/<property> DELETE Deleting an event
lapi/vl/trace/<target> GET Tracing forward or backward

4.2.1. Searching for events

Functional summary:
Searching for an event.

Method:
GET

URL path:
[api/vl/events

Restrictions:
None. Anyone can make a request.

Parameters:
The parameters are as shown in Table 4.2.2. They are given in the form of <paramn> =
<valuen>. If multiple parameters are specified, this is an AND search.

Table 4.2.2. Event search parameters

Parameter name Default value Explanation
paramn (not specified) Name of parameter for searching
valuen (not specified) Value of parameter for searching

At least one pair of <paramn>, <valuen> should be specified.

<paramn> is a property URI indicating the public data attributes of the event source, or a
parameter under Table 4.2.3. Commas included in the URI value should be URL encoded.
If there are multiple parameter values, they should be separated by commas.

The meaning of a request specifying an offset and limit is a request for the limit quantity
of search results, starting from the search result whose position corresponds to the offset
number when search results are ordered by time of event occurrence from newest to oldest
(ev:date).

-33-

Required HTTP headers:
The requested RDF format should be specified in the Accept header, based on Table 3.4.1.
(See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.2.4.

Table 4.2.3. Event search parameters

Parameter Format Explanation
name

target xsd:anyURI[] Event target identifier (ev:target, ev:source, ev:destination)

source xsd:anyURI[] Identifier of the source of event occurrence (ev:source)

destination xsd:anyURI] Identifier (ev:destination) generated as a result of event occurrence

owner xsd:anyURI] Identifier of event originator (ev:owner, ev:startOwner, eviendOwner)

after xsd:datetime Time of event occurrence (ev:date) is after this value.

before xsd:datetime Time of event occurrence (ev:date) is before this value.

place xsd:anyURI] Identifier of the place of event occurrence (ev:place)

description xsd:string Text describing the event (ev:description/partial match retrieval)

stream xsd:integer If this parameter is specified, the connection based on Stream APl is
continued for the specified number of seconds. (See section 3.7, Streams
APl.)

offset xsd:integer Offset value for search results. If this parameter is omitted, the results
returned will start with the first value.

limit xsd:integer Number of search results to be returned. If this parameter is omitted, the
limit will be set by the ODDP system.

Responses:

The response is RDF data of the event list, in the format specified by the Accept header.
If the response is divided (paging), a Link header should be added to the HTTP header,
based on section 3.4.3 (Rules on response paging).

API usage example
The following is an example of a request to search for an event, where the source of event
occurrence IS an entity indicated by the URI
urn:ucode:_00001C00000000000001000000100800, and the response.

Request
GET /api/vl/events?source=ucode_00001C00000000000001000000100123 HTTP/1.1

Accept: application/json

Host: www.example.org

-34 -

Table 4.2.4. Status codes when searching for events

Status code Meaning

200 OK Completed successfully.

400 Bad Request There is no <parami>, <value1> pair.
Incorrect <paramn>.

404 Not Found No event meeting the search conditions has been registered in
the ODDP system.

413 Request Entity Too Large The limit value is too high.

500 Internal Error An error occurred within the ODDP system.

~ Response N

HTTP/1.1 200 OK

Content-Length: xxx

Connection: close

Content-Type: application/json; charset=utf-2

{
"@context": {
"ey": "http://uidcenter.org/ucr/vocab/event#",
"ev:destination": { "@type": "@id" I,
"ev:source": { "@type": "@id" I},
"ev:place": { "@type": "@id" },
"ev:type": { "@type": "@id" }
T
"@graph": [
{
"@id": "urn:ucode:_00001C00000000000001000000100800",
"ev:date": "2012-03-07T12:00:00+0900",
"ev:destination": "urn:ucode:_00001C00000000000001000000100125",
"ev:place": "urn:ucede:_00001C00000000000001000000100400",
"ev:source": "ucede_00001C00000000000001000000100123",
"ev:type": "urn:ucode: OFFFDEQ00Q00000000000000001234567"

"@id": "urn:ucode:_00001C00000000000001000000100801",
"ev:date": "20412-03-07T13:00:00+0800",
"ev:destination": [
"urn:ucoede: _000041C0O0000000000001000000100126",
"arn:ucede: _00001C00000000000001000000100427"
1,
"ev:place": "urn:ucede:_00001C00000000000001000000100401",
"ev:gource": "urn:ucode:_00001C00000000000001000000100123",
"ev:type": "urn:ucode:_OFFFDEQCOQ00000000000000001234567"

-35-

4.2.2. Registering new events

Functional summary:
Registration of new events. If the date and time of event occurrence is not specified, the
current time is used.

Method:
POST

URL path:
lapi/vl/events

Restrictions:
Access by a user who is authorized to register events for the identifier of the source of
event occurrence.

Parameters:
The event data in RDF format is contained in the message body.
Automatic ucode issuing can be requested by including a URI having the format of
urn:ucode:_?<val>. (See section 3.6, RDF expressions requesting automatic ucode issuing.)

Required HTTP headers:
The format of RDF data contained in the message body should be stated in the Content-
Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.2.5.

Table 4.2.5. Status codes when registering new events

Status code Meaning
201 Created Completed successfully.
400 Bad Request RDF is not specified by the parameters.
409 Conflict The identifier of the specified event has already been registered in the
ODDP system.
500 Internal Error An error occurred within the ODDP system.
Responses:

The response is the structured data shown in Table 4.2.6, represented in JSON or XML
format.

Table 4.2.6. Response format for new event registration

Parameter Format Explanation
name
ucode hash | Hash data where the key is the specified variable name, and the value is the issued
ucode.

-36 -

API usage example

The following is an example of a request to register an event to the effect that “three items
were generated from an entity represented by
urn:ucode:_00001C00000000000001000000100124, at a place represented by the URI
urn:ucode:_00001C00000000000001000000100A01, at 13:00 on March 7, 2012," and the
response.

Here, in addition to the event ucode, the response returns ucodes that are provided for the
three generated items.

Request
o A
POST /api/vl/events HTTP/1.1

Host: www.example.org

Content-Length: xxx

Content-Type: application/json; charset=utf-8

{
"@context': {
"ev": "http://uidcenter.org/ucr/vocab/event#",
"ev:destination": { "@type": "@id" 1},

"ev:source": { "@type": "@id" I},
"ev:place": { "@type": "®@id" },
"ev:type": { "O@type": "@id" }
},
"@id": "urn:ucode:_%Te",
"ev:date": "2012-03-07T13:00:00+0900",
"ev:destination": [
"urn:ucode:_7d1",
"urn:ucode:_7d2",
"urn:ucode: _7?d3"
1,
"ev:place'": "urn:ucode:_00001C00000000000001000000100A01",
"ev:zource": "urn:ucode:_00001CO0000000000001000000100124"

-37-

~ Response N
HTTP/1.1 201 Created

Content-Length: xxx
Connection: close

Content-Type: application/jsen; charset=utf-8

{"ucode": {
"urn:ucode:_7Te":"urn:ucode:_00001C00000000000001000000100801",
"urn:ucode: _7d1":"urn:ucode: _00001C00000000000001000000100125",
"urn:ucode: _7d2" :"urn:ucode: _00001C00000000000001000000100126",

9 "urn:ucode: _?d3" :"urn:ucode: _00001C00000000000001000000100127"} } 4)

4.2.3. Viewing events

Functional summary:
Viewing events.

Method:
GET

URL path:
/api/v1/events/<targets>
e <target>: Event identifier. (xsd:anyURI[] format)

Restrictions:
Access by a user who is authorized to view information concerning the events specified by
<targets>.

Parameters:
As shown in Table 4.2.7.

Table 4.2.7. Event viewing parameters

Parameter Format Explanation
name
stream xsd:integer | If this parameter is specified, the connection based on Stream API is continued
for the specified number of seconds. (See section 3.7, Streams API.)

Required HTTP headers:
The requested RDF format should be stated in the Accept header, based on Table 3.4.1.
(See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.2.8.

-38-

Responses:

The response is RDF data of the event list, in the format specified by the Accept header.

Table 4.2.8. Status codes when viewing events

Status code Meaning
200 OK Completed successfully.
400 Bad Request <targets> are not specified.
404 Not Found No corresponding event can be found.
500 Internal Error An error occurred within the ODDP system.

API usage example

The following is an example of a request to view event information indicated by the URI
urn:ucode:_00001C00000000000001000000100800, and the response.

Request

GET /api/vl/events/ucode_00001C00000000000001000000100800 HTTP/1.1

Accept: application/json

Host: www.example.org

¢~ Response

HTTP/1.1 200 OK
Content-Length: xxx
Connection: close

"gcontext": {

+,

Content-Type: application/jscn; charset=utf-8

"ev": "http://uidcenter.org/ucr/vocab/event#",
"ev:destination": { "@type": "@id" },
"ev:source": { "@type": "@id" },

"ev:place": { "@type": "@id" 1},

"ev:type": { "@type":

"@id": "urn:ucode:_00001C00000000000001000000100800",

"ev:date": "2012-03-07T12:00:0040900",

"ev:destination": "urn:ucode:_00001C0O0000000000001000000100125",
_00001C00000000000001000000100400",
"ev:source": "urn:ucode:_00001C00000000000001000000100123",
"ev:type": "urn:ucode:_ OFFFDE000CQ0000000000000001234567"

"ev:place": "urn:ucode:

"aid" }

-39-

4.2.4. Viewing events: Specifying properties

Functional summary:
Specifying property values and viewing an event.

Method:
GET

URL path:
[api/vl/events/<targets>/<properties>
e <targets>: Event identifiers. (xsd:anyURI[] format)
e <properties>: Property identifiers. (xsd:anyURI][] format)

Restrictions:
Access by a user who is authorized to view information concerning the events specified by
<targets>.

Parameters:
As shown in Table 4.2.9.

Table 4.2.9. Parameters for event viewing when specifying properties

Parameter .
name Format Explanation
stream xsd:integer | If this parameter is specified, the connection based on Stream API is continued for
the specified number of seconds. (See section 3.7, Streams API.)

Required HTTP headers:
The format of RDF data contained in the message body should be stated in the Content-
Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.2.10.

Responses:
The response is RDF data of the event list, in the format specified by the Accept header.

Table 4.2.10. Status codes when viewing events and specifying properties

Status code Meaning
200 OK Completed successfully.
400 Bad Request <targets> are not specified.
404 Not Found No corresponding event can be found.
500 Internal Error An error occurred within the ODDP system.

API usage example
The following is an example of a request to obtain the time of occurrence (ev:date) of an
event indicated by the URI urn:ucode:_00001C00000000000001000000100800, and the
response.

- 40 -

Request

GET /api/wvl/events/ucode_00001C00000000000001000000100800,
ucode_00001C00000000000001000000100801/ev_date HTTP/1.1
Accept: application/json

Host: www.example.org

¢~ Response
HTTP/1.1 200 OK
Content-Length: xxx
Connection: close
Content-Type: application/json; charset=utf-8
{
"@context": {
"ev": "http://uidcenter.org/ucr/vocab/event#",
+,
"@graph": [
{
"@id": "urn:ucode:_00001C0000000000Q00Q01000000100800",
"ev:date": "2012-03-07T12:00:00+0800"
.
{
"@id": "urm:ucode:_00001C00000000000001000000100801",
"ev:date": "2012-03-07T13:00:00+0800"
1
]
}
-

4.2.5. Updating events

Functional summary:
Updating events.

Method:
PUT

URL path:
[api/vl/events/<target>
e <target>: Event identifier. (xsd:anyURI format)

Restrictions:
Access by a user who is authorized to update the event corresponding to <target>.

-4] -

Parameters:

Event update information in RDF format is contained in the message body.

e The subject of the update information is consistent with <target>.

e After the command is completed, the values of predicates contained in the update
information are completely consistent with the specified update information,
including quantities.

e The values of predicates that are not included in the update information are not
changed.

Required HTTP headers:
The format of RDF data contained in the message body should be stated in the Content-
Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.2.11.

Responses:
If successful, the response body is empty.

Table 4.2.11. Status codes when updating events

Status code Meaning
204 No Content Completed successfully.
400 Bad Request Incorrect parameter values.
403 Forbidden Access is not authorized.
404 Not Found No corresponding event identifier has been registered in the ODDP
system.
500 Internal Error An error occurred within the ODDP system.

API usage example
The following is an example of a request to update the place of occurrence (ev:place) of an
event indicated by the URI urn:ucode: 00001C00000000000001000000100800 to the
place indicated by the URI urn:ucode: 00001C00000000000001000000100A01, and the
response.

-42 -

¢/~ Request ™
PUT /api/vl/events/ucode_00001C00000000000001000000100800 HTTF/1.
Host: www.example.org
Content-Length: xxx
Content-Type: application/json; charset=utf-8
{
"@context": {
"ev": "http://uidcenter.org/ucr/vocab/event#",
"ev:place": { "@type": "@id" },
} t]
"@id": "urn:ucode:_00001C00000000000001000000100800",
"ev:place": "urn:ucede:_00001C00000000000001000000100A01"
}
N J
e Response ~
HITP/1.1 204 No Content
Connection: close
J

4.2.6. Updating events: Specifying properties

Functional summary:
Specifying property values and updating events.

Method:
PUT

URL path:
lapi/vl/events/<target>/<property>
e <target>: Event identifier. (xsd:anyURI format)
e <property>: Property identifier. (xsd:anyURI format)

Restrictions:

Access by a user who is authorized to update the event corresponding to <target>.

Parameters:

The RDF data representing the event information to be updated (called the "update event

data™) is contained in the message body.
e The subject of the update event data is consistent with <targets>.

e After the command is completed, the property values specified by <properties> in the
event information specified by <targets> will be completely consistent with the
update event data. Property values not specified by <properties> are not changed,

even if they are included in the update event data.

-43 -

Required HTTP headers:
The format of RDF data contained in the message body should be stated in the Content-
Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.2.12.

Responses:
If successful, the response body is empty.

Table 4.2.12. Status codes when updating events and specifying properties

Status code Meaning
204 No Content Completed successfully.
400 Bad Request Incorrect parameter values.
403 Forbidden Access is not authorized
404 Not Found No corresponding event identifier has been registered in the ODDP
system.
500 Internal Error An error occurred within the ODDP system.

API usage example
The following is an example of a request to update the place of occurrence (ev:place) of an
event indicated by the URI urn:ucode: 00001C00000000000001000000100800 to the
place indicated by the URI urn:ucode: 00001C00000000000001000000100A01, and the
response.

~ Request ~\
PUT /api/vl/events/ucode_00001C00000000000001000000100800/ev_place
HTTP/1.1
Host: www.example.org
Content-Length: xxx
Content-Type: application/json; charset=utf-8
{
"@context": {
"ev": "http://uidcenter.org/ucr/vocab/event#",
"ev:place": { "type": "@id" }
s
"@id": "geo_event_example",
"@graph": [
{
"@id": "urn:ucede:_00001C00000000000001000000100800",
"ev:place": "urn:ucode:_00001C00000000000001000000100A01"
}
]
C J

-44 -

Response

HTTP/1.1 204 No Content

Connection: close

4.2.7. Deleting events

Functional summary:
Deleting events.

Method:
DELETE

URL path:
/api/vl/events/<target>
e <target>: Event identifier. (xsd:anyURI format)

Restrictions:
Access by a user who is authorized to delete the event corresponding to <target>.

Parameters:
None.

Required HTTP headers:
None.

Status codes:
As shown in Table 4.2.13.

Table 4.2.13. Status codes when deleting events

Status code Meaning
204 No Content Completed successfully.
403 Forbidden Access is not authorized.
404 Not Found No corresponding event identifier has been registered in the ODDP
system.
500 Internal Error An error occurred within the ODDP system.
Responses:

If successful, the response body is empty.
API usage example

The following is an example of a request to delete an event indicated by the URI
urn:ucode:_00001C00000000000001000000100800, and the response.

-45-

Request

DELETE /api/vl/events/ucode_00001C00000000000001000000100800 HTITP/1.1
Host: www.example.org

Content-Length: xxx

Response

HTTP/1.1 204 No Content

Connection: close

4.2.8. Deleting events: Specifying properties

Functional summary:
Specifying property values and deleting events. Event information other than the specified
properties will remain.

Method:
DELETE

URL path:
/api/vl/events/<target>/<property>
e <target>: Event identifier. (xsd:anyURI format)
e <property>: Property identifier. (xsd:anyURI format)

Restrictions:
Access by a user who is authorized to delete the event corresponding to <target>.

Parameters:
None.

Required HTTP headers:
None.

Status codes:
As shown in Table 4.2.14.

Table 4.2.14. Status codes when deleting events and specifying properties

Status code Meaning
204 No Content Completed successfully.
403 Forbidden Access is not authorized.
404 Not Found No corresponding event identifier has been registered in the ODDP
system.
500 Internal Error An error occurred within the ODDP system.
Responses:

If successful, the response body is empty.

- 46 -

API usage example
The following is an example of a request to delete an event indicated by the URI
urn:ucode:_00001C00000000000001000000100800, and the response.

Request

DELETE /api/vl/events/uccde_00001C00000000000001000000100800/ev_date
HTTP/1.1
Host: www.example.org

Content-Length: xxx

Response

HTTP/1.1 204 No Content

Connecticn: close

4.2.9. Performing traces

Functional summary:
Tracing forward or backward with the specified target as the starting point, and returning a
list of events as a result.
A forward or backward trace is obtained by obtaining the properties of ev:source and
ev:destination between identifiers.

Method:
GET

URL path:
lapi/v1/trace/<target>
e <target>: Identifier of the event object or event which is the starting point of the trace.
(xsd:anyURI format)

Restrictions:
Access by a user who is authorized to view information concerning the public data or
event specified by <target>.

Parameters:
As shown in Table 4.2.15.

Table 4.2.15. Parameters for performing a trace

Parameter name Format Explanation

direction xsd:string Trace parameter, taking the following values. If omitted, the default is
forward.

¢ forward: Trace forward.
e back: Trace backward.

limit xsd:integer Number of layers to trace. If omitted, the default is 1 layer.

-47 -

Required HTTP headers:
The requested RDF format should be stated in the Accept header, based on Table 3.4.1.
(See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.2.16.

Table 4.2.16. Status codes when performing a trace

Status code Meaning
200 OK Completed successfully.
400 Bad Request <target> is not specified.
404 Not Found No corresponding public data or event can be found
500 Internal Error An error occurred within the ODDP system.
Responses:

The response is RDF data of the event list, in the format specified by the Accept header.

API usage example
The following is an example of a request to trace an event indicated by the URI
urn:ucode:_00001C00000000000001000000100800 in the forward direction for up to two
layers and output the relevant trace information, and the response.

Request

GET /api/vl/trace/ucode_00001C000000000000010000001008007
direction=forward&limit=2 HTTP/1.1
Accept: application/json

Host: www.example.org

-48 -

-~

{

}
N

HTTP/1.1 200 OK

Content-Length: xxx

Connection: close

Content-Type: application/json; charset=utf-8

Response ~\

"@context": {
"ev": "http://uidcenter.org/ucr/vocab/event#",
"ev:destination": { "@type": "@id" I,
"ev:source": { "@type": "@id" },
"ev:place": { "@type": "@id" },
"ev:type": { "@type": "@id" }
1,
"@graph": [
1
"@id": "urn:ucode:_00001C00000000000001000000100800",
"av:date”: "2012-03-07T12:00:00+0800",
"ev:destination": [
"urn:ucaede: _00001C00000000000001000000100124" ,
"urn:ucede : _000041C00000000000001000000100125"
1,
"ev:place": "urn:ucede:_00001C00000000000001000000100400",
"ay:source": "urn:ucode:_00001C00000000000001000000100123",
"ev:type": "urn:ucode:_OFFFDE0OQO0QO000000000000001224567"

"@id": "urn:ucode:_00001C00000000000001000000100801",
"ev:date": "2012-03-07T13:00:00+0300",
"ey:destination": [
"urn:ucode: _00001C00000000000001000000100126",
"urn:ucode: _00001C00000000000001000000100127"
1,
"ev:place": "urn:ucede:_00001C00000000000001000000100401",
"av:source": "urn:ucode:_00001C00000000000001000000100125",
"ev:type": "urn:ucode:_OFFFDEQOOOQ0000000000000001234567"

4.3.

Geographic data management commands

Geographic data management commands are commands to provide the functions
needed for processing of geographic data such as GIS.

Places are basically identified by ucodes, and information on the attributes of places is
managed using the vocabularies, etc. indicated in sections C.8 (GeoSPARQL
vocabulary) and C.15 (Geospatial vocabulary).

The basic region indicating a place (geometric data) is represented by linking its

identifying ucode with the property ug:region. This property can take the values
indicated in Table 4.3.1. If the data type is omitted, the default is Well Known Text.

- 49 -

Table 4.3.1. Geometric data representation format

Data type Specified data type
Well Known Text [19] ogc:wktLiteral
GML [45] ogc:gmiLiteral
GeoJSON [9] ug:GeoJSONLiteral

For example, the following is a representation in Notation3 format (prefix declaration
omitted) to the effect that the place specified by URI
urn:ucode:_00001C00000000000001000000100800 is a point at latitude 35.67 degrees
north, longitude 139.76 degrees east.

« If the Well Known Text format is used for geometric data:
<urn:ucode: 00001C00000000000001000000100800> ug:region
"<http://www.opengis.net/def/crs/fOGC/1.3/CRS84> Point(35.67
139.76)"Mogc:wktLiteral .

 If the GML format is used for geometric data:
<urn:ucode: 00001C00000000000001000000100800> ug:region "<gml:Point
srsName=\"http://www.opengis.net/def/crs/OGC/1.3/CRS84\">
<gml:coordinates>139.76 35.67</gml:coordinates>
</gml:Point> \""ogc:gmlLiteral .

 If the GeoJSON format is used for geometric data:
<urn:ucode: 00001C00000000000001000000100800> ug:region
"{\"typen":\"Pointn", \"coordinatesn": \"[139.76 35.67]\"
}""ug:geoJSONLiteral .

These commands are listed in Table 4.3.2. Details concerning each command are
provided below.

Table 4.3.2. List of geographic data management commands

URL path HTTP method Meaning
lapilvl/places GET Searching for place information
lapilvl/places POST Registering place information
lapi/lvl/places/<targets> GET Viewing place information
lapilvl/places/<targets>/<properties> GET Viewing place information
/apilvl/places/<target> PUT Updating place information
lapi/vl/places/<target>/<property> PUT Updating place information
lapilvl/places/<target> DELETE Deleting place information
lapi/vl/places/<target>/<property> DELETE Deleting place information
lapilvl/places/<target>/ug_consistsOf PUT Moving the inclusion relationships of place

information

-50 -

4.3.1. Searching for place information

Functional summary:
Searching for place information.

Method:
GET

URL path:
lapi/vl/places

Restrictions:
None. Anyone can make a request.

Parameters:
The parameters are as shown in Table 4.3.3. They are given in the form of <paramn> =
<valuen>. If multiple parameters are specified, this is an AND search.

Table 4.3.3. Place information search parameters

Parameter name Default value Explanation
paramn (not specified) Name of parameter for searching
valuen (not specified) Value of parameter for searching

At least one pair of <paramn>, <valuen> should be specified. <paramn> is any of the
following. If multiple properties are specified, this is an AND search.

1.

Target: An identifier of the searched place, its parameter value having the format of
xsd:anyURI[]. Commas included in the URI value should be URL encoded. If there
are multiple targets, they should be separated by commas.

Predicate: Used when specifying a predicate whose subject is a value of item 4 or item
5 below. Its parameter value has the format of xsd:anyURI[]. If omitted, the default is
ug:region.

Offset, limit: The parameter value is xsd:integer. The meaning is a request for the
limit quantity of search results, starting from the search result whose position
corresponds to the offset number. If parameters are set for item 4 below, this means a
request for the limit quantity of search results, starting from the search result whose
position corresponds to the offset number when search results are ordered by
proximity to the specified point.

Used when a point and radius are specified and a search is performed for identifiers of

places contained within that circle. The parameters are combinations of those in Table
4.3.4.

-51-

Table 4.3.4. Place information search parameters

Parameter Format Explanation
name

lat xsd:double Latitude in WGS84. Cannot be omitted.

lon xsd:double Longitude in WGS84. Cannot be omitted.

floor xsd:double[] Number of floors. Upper and lower limits are specified, separated with
commas. If the upper and lower limits are equal, this is unspecified if
omitted. (Either floor or alt is specified, but not both.)

alt xsd:double[] Height (m). Upper and lower limits are specified, separated with
commas. Unspecified if omitted. (Either floor or alt is specified, but not
both.)

radius xsd:double Search radius (m). Cannot be omitted.

5. Used when a shape such as a polygon is specified and a search is performed for
identifiers of contained, containing, or overlapping places. The parameter value is
Well Known Text (WKT) as prescribed by the Open Geospatial Consortium.

Table 4.3.5. Place information search parameters

Parameter name Format Explanation

intersect xsd:string (WKT) | The parameter value overlaps with the specified region.

within xsd:string (WKT) | The parameter value is completely contained within the
specified region.

contains xsd:string (WKT) The_ parameter value completely contains the specified
region.

6. Geo_format: Specifies the data type of geometric data. If this parameter is omitted,
the data type is ogc:wktLiteral (Well Known Text format).

7. Property URI indicating geospatial attributes.
Required HTTP headers:
The requested RDF format should be specified in the Accept header, based on Table 3.4.1.

(See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.3.6.

Responses:
The response is RDF data of the place list, in the format specified by the Accept header.

-52.-

Table 4.3.6. Status codes when searching for place information

Status code Meaning
200 OK Completed successfully.
400 Bad Request There is no <parami>, <valuei> pair.

Incorrect <paramn>.

404 Not Found No place information meeting the search conditions has been registered
in the ODDP system.
413 Request Entity The limit value is too high.
Too Large
500 Internal Error An error occurred within the ODDP system.

If the response is divided (paging), a Link header should be added to the HTTP header,
based on section 3.4.3 (Rules on response paging).

API usage example
The following is an example of a request to search for place identifiers contained in a
rectangle whose corners are the points (0,0), (2,0), (2,2), (0,2), and the response. For the
sake of readability, the WKT expression of the request is not URL encoded.

Request

GET /api/vl/places?within=POLYGON((0 0, 2 0, 2 2, 0 2, 0 0)) HTTF/1.1
Accept: application/json

Host: www.example.org

-53-

s Response ~
HTTP/1.1 200 OK

Content-Length: xxx
Connection: close
Content-Type: application/jscn; charset=utf-8

"@context": {
"ug": "http://uidcenter.org/ucr/vocab/ugh",
"ug:type": { "@type": "@id" }
},
"@graph": [
{
"2id": "urn:ucede:_00001C00000000000001000000100800",
"ug:region": "POINT(1 1) ",
"ug:type": "urn:ucode:_OFFFDEQOQQQ0000000000000001234567"

"@id": "urn:ucode:_00001C00000000000001000000100801",
"ug:region": "POINT(1.5 1.5) ",
"ug:type": "urn:ucode:_OFFFDE0O0QQ000000000000000001234567"

- /

4.3.2. Registering new place information

Functional summary:
Registration of new place information.

Method:
POST

URL path:
lapi/vl/places

Restrictions:
Access by a user who is authorized to register new place information.

Parameters:
The place registration data in RDF format is contained in the message body.
Automatic ucode issuing can be requested by including a URI having the format of
urn:ucode:_?<val> in the RDF data. (See section 3.6, RDF expressions requesting
automatic ucode issuing.)

-54 -

Required HTTP headers:
The format of RDF data contained in the message body should be stated in the Content-
Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:
As shown

Responses:

in Table 4.3.7.

The response is the structured data shown in Table 4.3.8, represented in JSON or XML

format.

API usage example
The following is an example of a request to register a point having the coordinates (1,1),

and the re

sponse.

Table 4.3.7. Status codes when registering new place information

Status code

Meaning

201 Created Completed successfully.

400 Bad Request The parameters specify neither rdf nor params.
The parameters specify either rdf or params, target, num, but not both.
The key of <params> is incorrect.
The parameters specify both target and num.

409 Conflict The identifier of the specified place information has already been
registered in the ODDP system.

500 Internal Error An error occurred within the ODDP system.

Table 4.3.8. Response format for new place information registration
Parameter Format Explanation
name
ucode hash Hash data where the key is the specified variable name, and the value is

the URI representation of the issued ucode.

-B5 -

Request
~ q

POST /api/vl/places HTTP/1.1
Content-Length: xxx
Content-Type: application/json; charset=utf-8

Host: www.example.org

"@context'": {
"ug": "http://uidcenter.org/ucr/vocab/ugh",
1,
"@id": "urn:ucode:_7x",
"ug:region": "POINT(1 1)"}
}

-

Response
e p

HTTP/1.1 201 Created
Content-Length: xxx
Connection: close

Content-Type: application/json; charset=utf-8

{"ucede": {
"ucode_7x": "urn:ucode:_00001C00000000000001000000100801" }+ }

4.3.3. Viewing place information

Functional summary:
Viewing place information.

Method:
GET

URL path:
lapi/vl/places/<targets>
e <targets>: Event identifiers. (xsd:anyURI[] format)

Restrictions:
Access by a user who is authorized to view the place information specified by <targets>.

Parameters:
None.

-56 -

Required HTTP headers:
The requested RDF format should be stated in the Accept header, based on Table 3.4.1.
(See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.3.9.

Table 4.3.9. Status codes when viewing place information

Status code Meaning
200 OK Completed successfully.
400 Bad Request <targets> are not specified.
404 Not Found No corresponding place information can be found.
500 Internal Error An error occurred within the ODDP system.
Responses:

The response is RDF data of the place information list, in the format specified by the
Accept header.

API usage example
The following is an example of a request to view the information of a place indicated by
the URI urn:ucode:_00001C00000000000001000000100800, and the response.

~ Request ~N
GET /fapi/vl/places/ucode_00001C00000000000001000000100800 HTTP/1.1
Accept: application/json

Host: www.example.org

- J

Response
s p

vy

HTTP/1.1 200 OK
Content-Length: xxx
Connection: close

Content-Type: application/json; charset=utf-8

"@context": {
"ug": "http://uidcenter.org/ucr/vocab/ugh",
"ug:type": { "@type": "@id" }
},
"@id": "urn:ucode:_00001C00000000000001000000100800",
"ug:region": "POINT(1 1) ",
"ug:type": "urn:ucode:_ _OFFFDEQ0OO000000000000000001234567"

-57-

4.3.4. Viewing place information: Specifying properties

Functional summary:
Specifying properties and viewing place information.

Method:
GET

URL path:
lapi/vl/places/<targets>/<properties>
e <targets>: Place identifiers. (xsd:anyURI[] format)
e <properties>: Property identifiers. (xsd:anyURI[] format)

Restrictions:
Access by a user who is authorized to view the place information specified by <targets>.

Parameters:
None.

Required HTTP headers:
The format of RDF data contained in the message body should be stated in the Accept
header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.3.10.

Table 4.3.10. Status codes when viewing place information and specifying properties

Status code Meaning
200 OK Completed successfully.
400 Bad Request <targets> or <properties> are not specified.
404 Not Found No corresponding place information can be found.
500 Internal Error An error occurred within the ODDP system.
Responses:

The response is RDF data of the place information list, in the format specified by the
Accept header.

API usage example
The following is an example of a request to view the location information (ug:region) of a
place indicated by the URI urn:ucode:_00001C00000000000001000000100800, and the
response.

- 58 -

- Request ~
GET /api/v1/places/ucode_00001C00000000000001000000100800,
ucode_00001C00000000000001000000100801/ug_region HTTP/1.1
Accept: application/json
Host: www.example.org

- J

-~ Response N
HTTP/1.1 200 OK
Content-Length: xxx
Connection: close
Content-Type: application/json; charset=utf-8
{

"@context": {
"ug": "http://uidcenter.org/ucr/vocab/ugh",
},
"@graph": [
{
"@id": "urnm:ucode:_00001C00000000000001000000100800",
"ug:region": "POINT(1 1) "
I
{
"@id": "urm:ucode:_00001C00000000000001000000100801",
"ug:region": "POINT(1.5 1.5) "
¥
]
\} /

4.3.5. Updating place information

Functional summary:
Updating place information.

Method:
PUT

URL path:
lapi/vl/places/<target>
e <target>: Place identifier. (xsd:anyURI format)

Restrictions:

Access by a user who is authorized to update the place information corresponding to
<target>.

-59 -

Parameters:
Place update information in RDF format is contained in the message body.
e The subject of the update information is consistent with <target>.
e The values of predicates contained in the update information are completely
consistent with the specified update information, including quantities.
e The values of predicates that are not included in the update information are not
changed.

Required HTTP headers:
The format of RDF data contained in the message body should be stated in the Content-
Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.3.13.

Responses:
If successful, the response body is empty.

Table 4.3.11. Status codes when updating place information

Status code Meaning
204 No Content Completed successfully.
400 Bad Request Incorrect parameter values.
403 Forbidden Access is not authorized
404 Not Found No corresponding place information identifier has been registered in the
ODDP system.
500 Internal Error An error occurred within the ODDP system.

API usage example
The following is an example of a request to update the location information (ug:region) of
a place indicated by the URI urn:ucode: 00001C00000000000001000000100800 to (1,1),
and the response.

-~ Request N
PUT /api/vl/places/ucode_00001C00000000000001000000100800 HTTP/1.1
Host: www.example.org
Content-Length: xxx
Content-Type: application/json; charset=utf-8
{"rdf": {
"@context'": {
"ug": "http://uidcenter.org/ucr/vocab/ug#",
+,
"@id": "urn:ucede:_00001C00000000000001000000100800",
"ug:region": "POINT(1 1)"
\. i J

-60 -

Response

HTTP/1.1 204 lNo Content

Connection: close

4.3.6. Updating place information: Specifying properties

Functional summary:
Specifying properties and updating place information.

Method:
PUT

URL path:
lapilvl/places/<target>/<property>
e <target>: Place identifier. (xsd:anyURI format)
e <property>: Property identifier. (xsd:anyURI format)

Restrictions:
Access by a user who is authorized to update the place information corresponding to
<target>.

Parameters:
The RDF data representing the place information to be updated (called the "update place
data™) is contained in the message body.

e The subject of the update place data is consistent with <targets>.

e After the command is completed, properties specified by <properties> in the place
information specified by <targets> will be completely consistent with the update place
data. Property values not specified by <properties> are not changed, even if they are
included in the update place data.

Required HTTP headers:
The format of RDF data contained in the message body should be stated in the Content-
Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.3.12.

Responses:
If successful, the response body is empty.

-61-

Table 4.3.12. Status codes when updating place information and specifying properties

Status code Meaning
204 No Content Completed successfully.
400 Bad Request Incorrect parameter values.
403 Forbidden Access is not authorized
404 Not Found No corresponding place information identifier has been registered in the
ODDP system.
500 Internal Error An error occurred within the ODDP system.

API usage example
The following is an example of a request to update the location information (ug:region) of
a place indicated by the URI urn:ucode:_00001C00000000000001000000100800 to (1,1),
and the response.

~ Request N
PUT /api/vl/places/ucode_00001C00000000000001000000100800/ug_region
HTTP/1.1
Host: www.example.org
Content-Length: xxx
Content-Type: application/json; charset=utf-8
{
"Qcontext": {
"ug:region": "http://uidcenter.org/ucr/vocab/ugiregion”,
¥
},
"@id": "geo_create_example",
"@graph': [
{
"@id": "urn:ucode:_00001C00000000000001000000100800",
"ug:region": "POINT(1 1)"
¥
]
_} J
s Response N
HTTP/1.1 204 No Content
Connection: close
\%Content—Type: application/jscn; charset=utf-8).

-62 -

4.3.7. Deleting place information

Functional summary:
Deleting place information.

Method:
DELETE

URL path:
/api/vl/places/<target>
e <target>: Place identifier. (xsd:anyURI format)

Restrictions:
Access by a user who is authorized to delete the place information corresponding to
<target>.

Parameters:
None.

Required HTTP headers:
None.

Status codes:
As shown in Table 4.3.13.

Table 4.3.13. Status codes when deleting place information

Status code Meaning

204 No Content Completed successfully.

403 Forbidden Access is not authorized.

404 Not Found No corresponding place information identifier has been registered in
the ODDP system.

409 Conflict Deletion is impossible because of other registered place information
having a relationship of inclusion, equivalence, or adjacency, etc. with
this place information.

500 Internal Error An error occurred within the ODDP system.

Responses:

If successful, the response body is empty.
API usage example

The following is an example of a request to delete a place indicated by the URI
urn:ucode:_00001C00000000000001000000100800, and the response.

-63-

Request

4 N
DELETE /api/v1l/places/ucode_00001C00000000000001000000100800 HTTP/1.1
Host: www.example.org
Content-Length: xxx
- /
-~ Response N
HTTP/1.1 204 No Content
Connection: close)

4.3.8. Deleting attributes of place information

Functional summary:
Specifying properties and deleting attributes of place information, or spatial metadata.
Place information other than the specified properties will remain.

Method:
DELETE

URL path:
lapilvl/places/<target>/<property>
e <target>: Place identifier. (xsd:anyURI format)
e <property>: Property identifier. (xsd:anyURI format)

Restrictions:
Access by a user who is authorized to update the place information corresponding to
<target>.

Parameters:
None.

Required HTTP headers:
None.

Status codes:
As shown in Table 4.3.14.

Table 4.3.14. Status codes when deleting attributes of place information

Status code Meaning
204 No Content Completed successfully.
403 Forbidden Access is not authorized.
404 Not Found No corresponding place information identifier has been registered in the
ODDP system.
500 Internal Error An error occurred within the ODDP system.

-64 -

Responses:
If successful, the response body is empty.

API usage example
The following is an example of a request to delete location information (ug:region) from a
place indicated by the URI urn:ucode:_00001C00000000000001000000100800, and the
response.

-~ Request

DELETE /api/vl/places/ucode_00001C00000000000001000000100800/ug_region
HTTP/1.1
Host: www.example.org

Content-Length: xxx

-
e Response

HTTP/1.1 204 No Content

Connection: close

4.3.9. Moving inclusion relationships of place information

Functional summary:
Moving the inclusion relationships of place information. This is a special case of section
4.3.6 (Updating place information: Specifying properties).

Method:
PUT

URL path:
[api/vl/places/<target>/ug consistsOf
o <target>: Place identifier. (xsd:anyURI[] format)

Restrictions:
Access by a user who is authorized to update the place information corresponding to
<target>.

Parameters:
The values to be updated are contained in the message body as strings of characters in
JSON or XML format.
After the command is completed, identifiers of places contained in <target> (having the
relationship of ug:consistsOf) will be completely consistent with the values contained in
the message body, including quantities.

Required HTTP headers:
None

Status codes:
As shown in Table 4.3.15.

- 65 -

Table 4.3.15. Status codes when moving inclusion relationships of place information

Status code Meaning
204 No Content Completed successfully.
400 Bad Request Incorrect parameter values.
403 Forbidden Access is not authorized.
404 Not Found No corresponding place information identifier has been registered in the
ODDP system.
500 Internal Error An error occurred within the ODDP system.
Responses:

If successful, the response body is empty.

API usage example
The following is an example of a request to update a place identifier contained in the place
indicated by the URI urn:ucode:_00001C00000000000001000000100800 to the following
two, urn:ucode: ~00001C00000000000001000000100900 and urn:ucode:
_00001C00000000000001000000100901, and the response.

-~ Request A
PUT /api/vl/places/ucode_00001C00000000000001000000100800/ug_conconsistsOf
HTTP/1.1

Host: www.example.org

Content-Length: xxx

Content-Type: application/jscn; charset=utf-8

["<urn:ucode:_00001C00000000000001000000100900>",
"<urn:ucede:_00001C00000000000001000000100901>"]

-

-

Response

HTTP/1.1 204 No Content

Connection: close

4.4, Security management commands

Security management commands are commands for role-based implementation of
access control for the operations of registering, viewing, updating, and deleting data, or
CRUD (Create, Read, Update, Delete).

The applications, data sets, and roles are defined below. The relationships between
applications, data sets, and roles are shown in Fig. 4.1.

Application: Applications are entities that request operations on public data using

standard APIs, identified with access tokens issued by Oauth 2.0 [25]. These access
tokens serve as authentication keys when using security management commands and

- 66 -

access control functions provided by these functions. In general, this refers to an
individual application.

Data set: Data sets are collections of one or more items of public data. They are
identified with URIs.

Role: Roles are RDF graphs representing whether or not applications are permitted to
perform CRUD operations with regard to data sets. They are identified with URISs.

/ ; \
Rights

Manager

<

s

DatasetA

Role (indicates
whether or not
each CRUD

operation is

permitted for a
data set; . . .
) Application (having access

tokens under Oauth 2.0)

Dataset B T E———

Fig. 4.1. Access control using security management commands

A role is written using the vocabulary in section C.14 (Access control vocabulary) to
indicate whether or not CRUD operations are permitted for up to 1 application and 1
data set. Roles not included in the application in question are for all applications, and
roles not included in the data set in question are for all data sets.
Roles should be evaluated according to the following sequence.
1. Roles where both the application and the data set are specified
2. Roles where only the application is specified
3. Roles where only the data set is specified
4. Roles where neither the application nor the data set is specified
For example, Fig. 4.2 illustrates the following access control rules.

o All applications may view Data #1, Data #2, and Data #3.

o Applications having ConsumerKey = Keyl may update and delete Data #1 and
Data #2.

e Applications having ConsumerKey = Key2 may update Data #1, Data #2, and Data
#3. No other access is permitted.

-67 -

-~ ~-., ndad:memberlf
Data#®1 J—
— - [
[Da1aset#1
—~ - oack: merrl:-ertf — 1

Datarz oo MEMEET

.\.

odaclaccessTagat .~

—~ . Ddactmembarct

Data#3 adaclaccessTamget

-, odactaccessTarget ™,
e Rnle¥!2)

Ru|a#1

odactrasReadpermission—
,ﬁl true

-

USRS Keyl |

odacthasUpdatePermission

o

3 trus

daclhasDeletePermission ———
| true

" Rnle#3

-

.z

- consne e [Kez |

U T —
cu:lad hasUpdatePemission . o true

C e __,--/] . C qu:a !

-; E:atasar""z H

——
:-l:lad cansumeriey I Kev2

odad-hasUpdatePermissi ST

Fig. 4.2. Example of access control statements

These commands are listed in Table 4.4.1.

When using security management commands and access control functions that provide
these functions, requests should be submitted by specifying the access token as the
value of the access_token query parameter, or by presenting the Oauth 2.0 access token
in the Authorization HTTP header.

The implementation method of OAuth 2.0 is not prescribed in these specifications. This
is implementation-dependent. When providing these functions, the method for

obtaining the Oauth 2.0 access token should be stated.

Details concerning each command are provided below.

Table 4.4.1. List of security management commands

URL path HTTP method Meaning
lapi/v2/roles GET Searching for a role
lapi/v2/roles POST Registering a new role
lapi/v2/roles/<targets> GET Viewing a role
lapi/v2/roles/<targets>/<properties> | GET Viewing a role
lapilv2/roles/<targets> PUT Updating a role
lapilv2/roles/<targets>/<properties> | PUT Updating a role
lapi/v2/roles/<targets> DELETE Deleting a role
lapi/v2/roles/<targets>/<properties> | DELETE Deleting a role
/api/v2/datasets GET Searching for a data set

4.4.1. Searching for roles

Functional summary:
Searching for roles.

- 68 -

Method:
GET

URL path:
[apilv2/roles

Restrictions:
This only be performed by an application that is authorized to perform role searches, and
it can only obtain the roles for which it has viewing rights.

Parameters:
The parameters are as shown in Table 4.4.2.
They are given in the form of <paramn> = <valuen>. If multiple parameters are specified,
this is an AND search.

Table 4.4.2. Role search parameters

Parameter name Default value Explanation
paramn (not specified) Name of parameter for searching
valuen (not specified) Value of parameter for searching

At least one pair of <paramn>, <valuen> should be specified.
<paramn> is any of the following.

e A property URI indicating a role attribute; for example, odacl:hasReadPermission.

e Target: An identifier of the searched role, its parameter value having the format of
xsd:anyURI[]. Any commas included in the URI should be URL encoded. If there are
multiple targets, they should be separated by commas.

e Offset, limit: The parameter value is xsd:integer. The meaning is a request for the
limit quantity of search results, starting from the search result whose position
corresponds to the offset number.

e Property names in the role description.

Required HTTP headers:
The requested RDF format should be specified in the Accept header, based on Table
3.4.1. (See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.4.3.

- 69 -

Table 4.4.3. Status codes when searching for roles

Status code Meaning
200 OK Completed successfully.
400 Bad Request There is no <parami>, <value1> pair.

Incorrect <paramn>.

404 Not Found No role meeting the search conditions has been registered in
the ODDP system.
413 Request Entity Too Large The limit value is too high.
500 Internal Error An error occurred within the ODDP system.
Responses:

The response is RDF data of the role list, in the format specified by the Accept header.
If the response is divided (paging), a Link header should be added to the HTTP header,
based on section 3.4.3 (Rules on response paging).

API usage example
The following is an example of a request to check whether the application whose
acl:consumerKey is "01230123AAFF" has the authority to access the data set
<http://example.org/target>, and the response.

Request

GET /api/v2/roles?acl_consumerKey=01230123AAFF&acl_accessTarget=http#34%2F
h2Fexample .orgf2Ftarget HTTP/1.1

Accept: application/jscn

Host: www.example.org

-70 -

Response
~ p

HTTP/1.1 200 OK
Content-Length: xxx
Connection: close
Content-Type: application/json; charset=utf-8
{
"@context": {
"odacl": "http://uidcenter.org/ucr/vocab/oddp-acl#",
"odacl:accessTarget" :{
"@id":"http://uidcenter.org/ucr/vocab/oddp-acl#accessTarget",
"Qtype":"@id" }
}
¥,
"@id": "rele_search_response_example",
"@graph": [
{
"@id": "urn:ucode:_00001C00000000000001000000100801",
"@type": "odacl:RightsStatement",
"odacl:accessTarget": "http://example.org/target",
"odacl:accessToken'": "01230123AAFF",
"odacl:hasReadPermission": true,

"odacl:isActive": true

¥
-

4.4.2. Registering new roles

Functional summary:
Registration of new roles.

Method:
POST

URL path:
lapi/v2/roles

Restrictions:
This can only be performed by an application that is authorized to register new roles.

Parameters:
The role description in RDF format is contained in the message body.

-71-

Automatic ucode issuing can be requested by including a URI having the format of
urn:ucode:_?<val> or an empty value URI in the RDF data. (See section 3.6, RDF
expressions requesting automatic ucode issuing.)

Required HTTP headers:

The format of RDF data contained in the message body should be stated in the Content-
Type header, based on Table 3.4.1. (See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.4.4.

Table 4.4.4. Status codes when registering new roles

Status code Meaning
201 Created Completed successfully.
400 Bad Request The role is incorrect.
409 Conflict The identifier of the specified role has already been registered in the

ODDP system, or the described role conflicts with a role description that
has already been registered in the ODDP system.

500 Internal Error An error occurred within the ODDP system.
Responses:
The response is the structured data shown in Table 4.4.5, represented in JSON or XML
format.

Table 4.4.5. Response format for new role registration

Parameter Format Explanation
name

ucode hash Hash data where the key is the specified variable name and the value is the URI
representation of the issued ucode, in cases where a URI with a variable name
was specified.

xsd:anyURI[] | A string consisting of the URI representation of the issued ucode, in cases where

an empty value URI was specified or automatic ucode issuing was not specified.

counts xsd:integer Quantity of registered roles.

total xsd:integer Total quantity of registered roles.

API usage example
The following is an example of a request to authorize an application having the Oauth

2.0 access token "CCCCCCCC" to perform viewing, updating, and deletion with regard
to a data set having the URI <http://example.org/sampleDataset>, and the response.

-72 -

Vs Request N
POST /api/v2/roles HTTP/1.1
ontent-Length: xxx
Content-Type: application/json; charset=utf-8
Host: www.exXample.org
{
"@context": {
"odacl": "http://uidcenter.org/ucr/vocab/oddp-acl#",
"odacl:accessTarget" :{
"@id":"http://uidcenter.org/ucr/vocab/oddp-acl#accessTarget",
"@type":"@id"
}
¥,
"@id": "rele_create_example",
"@graph": [
{
"pid": "ucode:_Tx",
"@type": "odacl:RightsStatement",
"odacl:accessTarget": "http://example.org/sampleDataset”,
"odacl:acceasToken": "CCCCCCCC",
"odacl:hasReadPermission": true,
"odacl:hasUpdatePermission": true,
"odacl:hasDeletePermission": true,
"odacl:isActive": true
}
1}
- J
e Response N
HTTP/1.1 201 Created
Content-Length: xxx
Connection: close
Content-Type: application/json; charset=utf-8
{"ucode" :{"ucode: _?x" :"urn:ucode:_00001C0O0000000000001000000100801"},
"counts": 1,
"total": 1
_} J

-73-

4.4.3. Viewing roles

Functional summary:
Viewing role information.

Method:
GET

URL path:
lapilv2/roles/<targets>
e <targets>: Role identifiers. (xsd:anyURI[] format)

Restrictions:
This can only be performed by a user who is authorized to view the roles specified by
<targets>.

Parameters:
None.

Required HTTP headers:
The requested RDF format should be stated in the Accept header, based on Table 3.4.1.
(See section 3.4.1, Format of message body.)

Status codes:
As shown in Table 4.4.6.

Table 4.4.6. Status codes when viewing roles

Status code Meaning
200 OK Completed successfully.
400 Bad Request <targets> are not specified.
404 Not Found No corresponding role can be found.
500 Internal Error An error occurred within the ODDP system.
Responses:

The response is RDF data of the role list, in the format specified by the Accept header.

API usage example
The following is an example of a request to view the information of a role indicated by
the URI urn:ucode:_00001C00000000000001000000100800, and the response.

Request
GET /api/v2/roles/ucode_00001C00000000000001000000100800 HTTP/1.1
Accept: application/json

Host: www.example.org

-74 -

Response
s p

HTTP/1.1 200 OK
Content-Length: xxx
Connection: close

Content-Type: application/json; charset=utf-8

"@context": {
"odacl": "http://uidcenter.org/ucr/vocab/oddp-acl#",
"odacl:accessTarget" :{
"@id":"http://uidcenter.org/ucr/vocab/oddp-acl#accessTarget",
"@type":"Qid"
}
},
"@id": "role_search_response_example",
"@graph": [
{
"2id": "urn:ucede:_00001C00000000000001000000100800",
"@type": "odacl:RightsStatement",
"odacl:accessTarget": "http://example.crg/sampleDataset"”,
"odacl:acceasToken": "CCCCCCCC",
"odacl:hasReadPermission": true,
"odacl:hasUpdatePermission": true,
"odacl :hasDeletePermission": true,

"odacl:isActive": true

}

-

4.4.4. Viewing roles: Specifying properties

Functional summary:
Specifying properties and viewing roles.

Method:
GET

URL path:
[api/v2/roles/<targets>/<properties>
e <targets>: Role identifiers. (xsd:anyURI[] format)
e <properties>: Property identifiers. (xsd:anyURI[] format)

-75-

Restrictions:
This can only be performed by a user who is authorized to view the roles specified by
<targets>.

Parameters:
None.

Status codes:
As shown in Table 4.4.7.

Table 4.4.7. Status codes when viewing roles and specifying properties

Status code Meaning
200 OK Completed successfully.
400 Bad Request <targets> are not specified.
404 Not Found No corresponding role can be found.
500 Internal Error An error occurred within the ODDP system.
Responses:

The response is RDF data of the role list, in the format specified by the Accept header.

API usage example
The following is an example of a request to view the viewing authority under the role
indicated by the URI urn:ucode:_00001C00000000000001000000100800, and the
response.

Request

GET /api/v2/roles/ucode_00001C00000000000001000000100800/0dacl_
hasReadPermission HTTP/1.1

Accept: application/json

Host: www.example.org

-76 -

e Response N
HTTP/1.1 200 OK
Content-Length: xxx
Connection: close

Content-Type: application/json; charset=utf-8

"Qcontext": {

"odacl": "http://uidcenter.org/ucr/vocab/oddp-acl#",

}
T,
"@id": "role_search_response_example",
"@graph": [

{

"@id": "urn:ucode:_00001C00000000000001000000100800",

"odacl :hasReadPermission": true,

4.45. Updating roles

Functional summary:
Updating roles